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Introduction

The Jacobian variety of a curve X is an Abelian variety Jac(X), such that X embeds into Jac(X).
This embedding turns out to be a very useful property in understanding the Abelian structure of
the Jacobian and, with that, recovering some information about the curve. For Mumford (1999),
the importance of the Jacobian is the following.

The Jacobian has always been the corner-stone in the analysis of algebraic curves and
compact Riemann surfaces. Its power lies in the fact that it abelianizes the curve and
is a reification of H1,(...) Weil’s construction (of the Jacobian) was the basis of his
epoch-making proof of the Riemann Hypothesis for curves over finite fields, which really
put characteristic p algebraic geometry on its feet [Mum99].

Additionally, the Jacobian variety is isomorphic to the Picard group, which gives a tool to under-
stand the divisors of X.

The problem of finding rational points on curves has been studied by many mathematicians over
time. Fermat’s Last Theorem is an example of a problem in this area. Around 1637, Pierre de
Fermat, wrote in the margin of his copy of Arithmetica, “It is impossible to write a cube as sum
of two cubes, a fourth power as a sum of two fourth powers, and, in general, any power beyond
the second as a sum of two similar powers.” That is, the solutions with rational coefficients for the
equation

xn + yn = zn,

with n ≥ 3 are just the trivial ones, meaning that at least one of the values x, y, z has to be zero.

This problem remained unsolved for about 350 years, until Andrew Wiles finished a proof in 1994.
With the theorem proved, there are some related questions that still need to be answered. One
such question which we study in this document is, "what are the solutions of the Fermat equations
defined over number fields?". For these fields, we get nontrivial solutions, but it is not known how
to characterize all of them.

In this paper, we study some methods that give partial answers to this problem. Our approach is
to consider the Jacobian variety of Fermat curves. In order to do that, we must first define the
Jacobian variety for a compact Riemann surface, of which Fermat curves are one example. Next,
we define the Fermat curves and explicitly construct a basis for the space of one-forms. That is
relevant for this work because we can use one-forms to decompose the Jacobian of the Fermat curve
as a product of the Jacobians of quotients of the curve. With this decomposition, we give some
explicit examples for the rational points of the Jacobian of some Fermat curves.

Finally, we explain how to use the rational points in the Jacobian variety of the Fermat curves of
degree 5 or 7 to find rational points on the curves defined over number fields of degrees at most 3
and 5, respectively. For the Fermat curve of degree 5, the reader will find a new proof of the set of
solutions over those fields being a set consisting of five specific points.
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1 Preliminaries

To start, let X be a smooth compact Riemann surface. To construct the Jacobian variety of X,
we need some facts about the topological structure of X, namely its CW-complex structure and its
first homology group.

Let g be the genus of X. It is possible to give X a CW-complex structure consisting of one 0-cell,
2g 1-cells and one 2-cell in the following way. Construct a polygon of 2g sides labeled in order
ai, bi, a

′
i, b
′
i for 1 ≤ i ≤ g, the sides ai and bi oriented clockwise and the sides a′i and b′i oriented

counterclockwise. Then, attach a 2-cell identifying the sides ai and a′i and also the sides bi and b′i.
An important fact about this construction is that X can be triangulated. With this CW-complex
structure, the first homology group of X, denoted by H1(X,Z), is isomorphic to Z2g.

Define Ω1(X) as the set of holomorphic 1-forms on X. For a compact Riemann surface of genus
g, the space of holomorphic 1-forms has dimension g over C and Ω1(X) ∼= Cg [Nar92, Theorem 5.1.1].

A divisor of X is an element of the free abelian group generated by the points of X. Denote this
set as Div(X). Note that this definition is the same as taking finite integer linear combinations of
the points of X. Given a divisor D =

∑
P∈X nPP , we define the degree of D as

∑
P∈X nP . For a

divisor of the same form, we define
ordP (D) := nP .

Note that ordP (D) is zero for all but finitely many P ∈ X.

Given two divisors, D1 =
∑

P∈X nPP and D2 =
∑

P∈X mPP , we say that D1 ≤ D2 if and only
if nP ≤ mP for all P ∈ X, which induces a partial ordering on the set of divisors. We say that a
divisor D is effective if D ≥ 0.

For a meromorphic function f : X → C, we can compute the order of f at a point P in X as

ordP (f) =


k in f has a zero of order k at P
−k in f has a pole of order k at P
0 otherwise.

Since the set of points in which a nonzero function has a zero or a pole is finite, we can define the
divisor Div(f) as

∑
P∈X ordP (f)P . For D a divisor, we define the vector space

L (D) := {f | f is meromorphic and Div(f) +D ≥ 0}.

That is, L (D) is the space of meromorphic functions with poles bounded by D. Let l(D) be the
dimension of L (D) as a complex vector space. Finally, define |D| as the set of all effective divisors
linearly equivalent to D, which means

|D| = {D′ | D −D′ = Div(f), f is a meromorphic function, D′ is effective}.
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2 Jacobian varieties

We now focus on the construction of the Jacobian variety in the case where we have a smooth
compact Riemann surface. First, we present an analytic definition using the space of one-forms of
X followed by another construction using divisors.

2.1 Analytic definition

The Jacobian variety for a compact Riemann surface X can be constructed as a quotient of the dual
space of holomorphic one-forms of X. This way of defining the Jacobian ensures we get an Abelian
variety because the dual space of the holomorphic one-forms is an Abelian group with geometric
structure. Also, it explains how the Jacobian can be thought of as a quotient of Cg, with g the
genus of the surface. In this section we show that construction.

Recall Stokes Theorem [Mir95, Theorem VII.3.16], which states that if B is a triangulable closed
set on X and ω is a C∞ one-form on X, then∫

∂B
ω =

∫ ∫
B
∂ω.

Let [c] be an element of H1(X,Z). For all 1-cycle d such that [d] = [c], we have that d = c+ ∂b for
some 2-chain b. Using Stokes Theorem with D = b, we have that for all closed, C∞ one-forms ω,∫

d
ω =

∫
c
ω +

∫
∂b
ω =

∫
c
ω +

∫ ∫
b
∂ω =

∫
c
ω +

∫ ∫
b
0 =

∫
c
ω.

In particular, if ω is an holomorphic one-form, it is also closed [Mir95, Lemma IV.2.4] which implies
that the following map is well defined.∫

[c] : Ω1(X) → C
ω 7→

∫
c ω

where [c] ∈ H1(X,Z).

We say that a linear functional λ : Ω1(X)→ C is a period if it is
∫
[c] for some [c] ∈ H1(X,Z). The

set of periods is a subgroup of Ω1(X)∗. Indeed, given [c], [d] ∈ H1(X,Z),∫
[c]
ω +

∫
[d]
ω =

∫
[c]+[d]

ω =

∫
[c+d]

ω,

where c + d denotes concatenation of the path c with the path d. We denote the set of periods as
Λ, and because it is a subgroup of Ω1(X)∗, we can consider the quotient Ω1(X)∗/Λ.

Definition 2.1. The Jacobian of a compact Riemann surface X is the quotient of linear functionals
of holomorphic one-forms of X by the set of periods, that is,

Jac(X) :=
Ω1(X)∗

Λ
.

Remark. Because Ω1(X)∗ is an Abelian group, Jac(X) is also Abelian. Moreover, since X is a
compact Riemann surface of genus g, Ω1(X) has a basis ω1, . . . , ωg. Every λ ∈ Ω1(X)∗ is completely
determined by vλ = (λω1, . . . , λωg). This implies Ω1(X)∗ is isomorphic to Cg by identifying λ and
vλ. Under this map, Λ is isomorphic to the set of elements of the form (

∫
c ω1, . . . ,

∫
c ωg) with

[c] ∈ H1(X,Z).
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Example 2.2. If X = C∞, the genus of X is 0, which implies the space of holomorphic forms is 0,
hence Jac(X) = 0.

Example 2.3. If X is the complex torus C/L, then Jac(X) ∼= X. As proof, note that the genus
of the torus is 1, thus Ω1(X) ∼= 〈dz〉 ∼= C, which implies Ω1(X)∗ ∼= C. Therefore, to show the
congruence it is enough to show that Λ ∼= L.

Assume L = z1Z⊕ z2Z and that π : C→ C/L is the quotient map. Also, define the paths

γ1 : [0, 1] → C
t 7→ t · z1

γ2 : [0, 1] → C
t 7→ t · z2

Note that the compositions πγ1 and πγ2 are loops in X based at 0. We know that one of them is
not a multiple of the other because z1 and z2 are linearly independent over R. It is well known that
H1(X,Z) ∼= Z⊕Z which leads us to conclude that πγ1 and πγ2 generate H1(X,Z). Therefore, Λ is
a lattice. In addition, we can compute∫

πγ1

π∗(dz) =

∫
γ1

dz =

∫ 1

0
z1dt = z1∫

πγ2

π∗(dz) =

∫
γ2

dz =

∫ 1

0
z2dt = z2.

This implies that the integrals are linearly independent over R and that we have the equality
Λ ∼= z1Z⊕ z2Z, which leads us to conclude X ∼= Jac(X).

2.2 The Abel-Jacobi map

An important property of the Jacobian of a smooth compact Riemann surface X, is that X can be
embedded into Jac(X). In this section, we study the map that provides this embedding, which is
called the Abel-Jacobi map. Also, we give the generalization of the Abel-Jacobi map to a function
that has the set of divisors of X as its domain. Finally, we state the Abel-Jacobi Theorem, an
important result which characterizes the Jacobian in a different way.

First, let X be a compact Riemann surface. Pick p0 ∈ X and for each p ∈ X, let γp be a path from
p0 to p. We would like to define a function

X → Ω1(X)∗

p 7→
∫
γp
.

(2.1)

However, this map is not well defined because it depends on the chosen path. If γ′p is another path
from p0 to p, note that ∫

γp

ω =

∫
γ′p

ω +

∫
γp−γ′p

ω.

We see that γp − γ′p is a closed loop based at p0, which implies it is a closed chain and therefore
that

∫
γp−γ′p

is a period. This implies the function of Equation 2.1 is well defined modulo the set of
periods of X.

Definition 2.4. The Abel-Jacobi map of X is defined as the map

A : X → Jac(X)

such that A(p) =
∫
γp

(mod Λ).
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This definition depends on the base point p0. To define a map independent from the choosing of
p0, it is necessary to extend the definition to the set of divisors of degree 0 of X.

Definition 2.5. The Abel-Jacobi map of Div(X) is the function

AD : Div(X) → Jac(X)∑
niPi 7→

∑
niA(Pi)

If we restrict AD to divisors of degree 0 then we get A0 : Div0(X)→ Jac(X), which is independent
of the base point by the following lemma.

Lemma 2.6. The map A0 : Div0(X)→ Jac(X) defined as A0 (
∑
niPi) =

∑
niA(Pi) is independent

of the selection of a base point to compute A.

Proof. Assume p0 and p′0 are two distinct base points and let γ be a path from p′0 to p0. Consider
p ∈ X and γp a path from p0 to p. We can define A with base point p0 as

A(p) =

(∫
γp

ω1, . . . ,

∫
γp

ωg

)
+ Λ

or with base point p′0 as

A(p) =

(∫
γ+γp

ω1, . . . ,

∫
γ+γp

ωg

)
+ Λ =

(∫
γp

ω1, . . . ,

∫
γp

ωg

)
+

(∫
γ
ω1, . . . ,

∫
γ
ωg

)
+ Λ.

Define j :=
(∫

γ ω1, . . . ,
∫
γ ωg

)
. The previous equation shows that if we change the base-point, we

get a factor of j in A(p). Then, for divisors of degree zero, A0(
∑
niPi) changes by a factor of∑

nij = j
∑
ni = 0, since

∑
ni = 0.

Theorem 2.7 (Abel-Jacobi Theorem). The Abel-Jacobi map is surjective with kernel the principal
divisors of X. That is,

Div0(X)

PDiv(X)
∼= Jac(X).

We explain a proof of the theorem in the next section. Before, we present a corollary which proves
that the Abel-Jacobi map defines an embedding of X into its Jacobian.

Corollary 2.8. If X is a smooth compact Riemann surface of genus g ≥ 1, the Abel-Jacobi map
A : X → Jac(X) is injective.

Proof. Assume towards a contradiction that A(p) = A(q) for p 6= q, points in X. Hence, A0(p−q) =
0 and Abel’s Theorem implies p−q is a principal divisor. Therefore, there is a meromorphic function
f on X with only one zero at p and one pole at q. Using f , it is possible to define the holomorphic
map F : X → C∞ as

F (x) =

{
f(x) if x is not a pole of f
∞ if x is a pole of f.

The function F is non-constant because f(x) has one zero and one pole. Also, F (x) has degree one
since the only zero of f(x) is at p. Therefore, F defines an isomorphism. However, the genus of the
Riemann sphere is 0, whereas g ≥ 1, a contradiction.
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2.3 Abel-Jacobi Theorem

We present a sketch of a proof of the Abel-Jacobi Theorem, stated in Theorem 2.7. The proof con-
sists on two theorems, that show that the Abel-Jacobi map is injective and surjective, respectively.

Theorem 2.9 (Abel’s Theorem). A divisor of degree 0 is principal if and only if its image under
the Abel-Jacobi map is zero.

Proof (sketch). For the forward direction, let f be a meromorphic function and let D be its divisor.
Define F : X → C∞ as the corresponding map, which is the same map defined in Corollary 2.8. Let
γ be a path from∞ to 0 in C∞ not passing through branched points of F . Note that F ∗γ =

∑d
i=1 γi,

where each γi is a path from a pole to a zero of f . Define pi = γi(1) and qi = γi(0). Then we can
write

D =

d∑
i=1

(pi − qi).

Now, choose a base point p0 ∈ X, a path αi from p0 to pi and βi from p0 to qi. If {ω1, . . . , ωg} is a
basis for Ω1(X), then we have

A0(D) =

d∑
i=1

(∫
αi

ω1, . . . ,

∫
αi

ωg

)
−
(∫

βi

ω1, . . . ,

∫
βi

ωg

)
+ Λ.

If ηi is the path αi− γi− βi, the vector
(∫

ηi
ω1, . . . ,

∫
ηi
ωg

)
is a period for all i ∈ {1, . . . , d}. Hence,

we can substract those vectors from A0(D) and get the same equivalence class, i.e.

A0(D) =
d∑
i=1

(∫
αi

ω1, . . . ,

∫
αi

ωg

)
−
(∫

βi

ω1, . . . ,

∫
βi

ωg

)
−
(∫

ηi

ω1, . . . ,

∫
ηi

ωg

)
+ Λ.

=

(
d∑
i=1

∫
γi

ω1, . . . ,
d∑
i=1

∫
γi

ωg

)
+ Λ

=

(∫
F ∗γ

ω1, . . . ,

∫
F ∗γ

ωg

)
+ Λ.

In addition,
∫
F ∗γ ωi =

∫
γ Tr(ωj) [Mir95, Lemma VIII.3.4], where Tr(ωj) is holomorphic because ωj

is holomorphic as well [Mir95, VIII.3]. However, the only holomorphic one-form of C∞ is 0 since its
genus is zero, which implies A0(D) = 0.

Conversely, let D ∈ Div0(X) be in the kernel of A0. By [Mir95, Lemma VIII.4.6], there is a
meromorphic one-form ω such that:

• ω has simple poles at the points where D(p) 6= 0, and has no other poles;

• Resp(ω) = D(p) for each p ∈ X, where D(p) is the coefficient of p in the formal sum D;

• The a− and b−periods of ω are integral multiples of 2πi.

Here, the a−periods and b−periods are defined using the CW complex of X with 1-cells {ai, bi}gi=1.
For any one-form σ we can define

Ai(σ) :=

∫
ai

σ and Bi(σ) :=

∫
bi

σ.
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The a−periods for σ are the numbers Ai(σ) and the b−periods are the numbers Bi(σ).

We can fix a point p0 ∈ X and define a map f : X → C as

f(p) = exp

(∫ p

p0

ω

)
.

The map is holomorphic where ω is holomorphic, that is, in the set of points with coefficient 0 in
D. Also, because the periods are multiples of 2πi and the residues of ω are integers (D(p) ∈ Z),
we have that f does not depend on the path chosen from p to p0. Our goal is to show that f is
meromorphic and Div(f) = D.

Assume p ∈ X with ordP (D) = n 6= 0. By the construction of ω, this implies that in a neighborhood
of p, we can write

ω =
n

z
+ g(z),

where g(z) is holomorphic with no zeros at p. For z in that neighborhood,

f(z) = exp

(∫ z

p0

ω

)
= exp

(∫ z

p0

n

z
+ g(z)

)
= exp(n ln(z) + h(z)) = zneh(z),

with h(z) a holomorphic function. This implies f(z) is meromorphic in a neighborhood of p and
ordp(f) = n. In conclusion, Div(f) = D.

Theorem 2.10 (Jacobi Inversion Theorem). The Abel-Jacobi map from divisors of degree zero to
the Jacobian is surjective.

Proof. Choose a base point p0 and define the map ϕ : Xg → Jac(X) as

ϕ(p1, . . . , pg) =

(
g∑
i=1

∫ pi

p0

ω1, . . . ,

g∑
i=1

∫ pi

p0

ωg

)
,

where {ω1, . . . , ωg} is a basis of Ω1(X). One can show that there is a tuple p = (p1, . . . , pg) such that
the Jacobian determinant of ϕ is not zero [Nar92, Lemma 15.1.]. The implicit function theorem im-
plies there is an open neighborhood of p for which ϕ maps bijectively into a neighborhood V of ϕ(p).

Consider λ = (λ1, . . . , λg) in Ω1(X)∗ ∼= Cg. Because V is open, there is an n such that

ϕ(p) +
λ

n
∈ V.

Since ϕ is bijective in V , there is a q = (q1, . . . , qg) ∈ Xg such that

ϕ(q) = ϕ(p) +
λ

n
. (2.2)

Now, define the divisor

D′ = n

g∑
i=1

qi − n
g∑
i=1

pi + gp0.

The degree of D′ is g and by the Riemann-Roch Theorem,

h0(D′) = 1 + h0(K −D′) ≥ 1

7



for K the divisor of a meromorphic one-form. That implies D′ is linearly equivalent to a divisor
D =

∑g
i=1 ri. Hence,

A0(D
′ − gp0) = A0(D − gp0).

By the definition of ϕ,

A0(D − p0) = A0

(
g∑
i=1

(ri − p0)

)
= ϕ(r1, . . . , rg).

In addition,

A0(D
′ − gp0) = nAD

(
g∑
i=1

(qi − zi)−
g∑
i=1

(pi − p0)

)

= n(ϕ(q)− ϕ(p))

= λ.

Therefore, by equation 2.2 we have A0(D
′ − gp0) = λ, hence A0 is surjective.

Remark. After proving that Jac(X) ∼= (Div0(X))/(PDiv(X)), it is also common to name the Abel-
Jacobi map as the function

X(d) → Jac(X)

(P1, . . . , Pd) 7→
[∑d

i=1(Pi − P0)
]

where P0 is a fixed point in X and X(d) is the symmetric product variety of X, d ≥ 1.
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3 Fermat Curves

For every positive integer N , the Fermat curve of degree N is the smooth plane curve with projective
equation

F (N) = {[X : Y : Z] ∈ P2(Q̄) | XN + Y N = ZN}.

Because the curves are smooth, we can apply Plücker’s formula to get that the genus of F (N) is
(N − 1)(N − 2)/2 [Mir95, Proposition 3.2.6].

It is well known that Fermat’s Last Theorem, proved by Andrew Wiles, states that the only rational
points in F (N) for N ≥ 3 are the points (x, y, z) such that xyz = 0. This result is no longer true
when we consider points defined over larger fields. In figure 1, we have graphs of the real points
on Fermat curves from degree 2 to 7. In this document, we concentrate on number fields. There
are many methods to find rational points defined over number fields on Fermat curves. We will use
rational points of the Jacobian variety of Fermat curves to understand the rational points over the
curves. Specifically, we focus on the case in which N is a prime number. In this case, we can find
quotients of Fermat curves that are very useful in describing their Jacobians. This construction is
based on [Mur93, Chapter 8] and [Lan82, Chapter 2].

−2 −1 1 2

−2

−1

1

2

x

y

F (3)(R)

F (5)(R)

F (7)(R)

−2 −1 1 2

−2

−1

1

2

x

y

F (4)(R)

F (6)(R)

F (8)(R)

Figure 1: Real points on xN + yN = 1

3.1 The space of one-forms

In this section we consider the case where N is an odd prime number. We define the meromorphic
functions on F (N) given by x = X/Z and y = Y/Z. For all r, s integers greater than 0, we define
the one-form:

ωr,s = xr−1ys−1
dx

yn−1
.

We claim that ωr,s is holomorphic for all r, s ≥ 1 such that r+ s ≤ N − 1. As proof, note that x is
a uniformizer unless y = 0. If y = 0, then y is a uniformizer and the equation

xN + yN = 1
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implies x 6= 0 and
dx

yN−1
= − dy

xN−1
.

Therefore, ωr,s is holomorphic when y = 0 and x 6= 0. Finally, if x has a pole P , this implies Z is a
simple pole and ordP (x) = ordP (y) = −1. We can take t = 1/x to get

ωr,s = xr−1ys−1
(

1

yN−1

)(
− 1

t2
dt

)
,

which implies

ordP (ωr,s) = −(r − 1)− (s− 1) + (N − 1)− 2 = (N − 1)− (r + s) ≥ 0,

concluding the proof of our claim.

Proposition 3.1. The set β = {ωr,s | r, s ≥ 1, r + s ≤ N − 1} is a basis for the holomorphic
one-forms.

Proof. First note that there are 1
2(N − 1)(N − 2) many forms in β, exactly the genus of F (N).

Therefore, it is enough to prove β is linearly independent over C. In order to do that, consider A
and B, the automorphisms of F (N) given by

A[X : Y : Z] = [ζX : Y : Z] and B[X : Y : Z] = [X : ζY : Z], (3.1)

where ζ is the primitive N−th root of unity exp(2πi/N). It is clear that A and B generate a
subgroup G of the automorphisms of F (N), where G ∼= (Z/NZ)2. This subgroup also acts on the
set {ωr,s} by

AiBj(ωr,s) = ζ(r−1)i+(s−1)j+i−(N−1)jxr−1ys−1
dx

yN − 1
= ζir+jsωr,s.

Hence, we can define a character χr,s of G such that χr,s(AiBj) = ζir+js, which for all g ∈ G,
implies that g(ωr,s) = χr,s(g)ωr,s. Under this definition, note that for two pairs (r, s), (r′, s′) such
that

r, s, r′, s′ ≤ 1, r + s ≤ N − 1, and r′ + s′ ≤ N − 1,

if χr,s = χr′,s′ , then (r, s) = (r′, s′). Therefore, the characters are linearly independent over C which
implies the elements ωr,s are linearly independent too.

3.2 Quotients of the Fermat curve

To describe the Jacobian variety of F (N), for N an odd prime, it is necessary to consider some
quotients of F (N) and their Jacobian varieties. In this section, we will define the quotients and
compute their genus.

The rational function field of F (N) is K = C(x, y), where xN + yN = 1. Here, we have the group G
and the automorphisms A and B as in the previous section. The subfield of K fixed by G is C(xN ).
Let Gr,s be the subgroup of G given by the kernel of χr,s and let Kr,s be the subfield of K fixed by
Gr,s.

If AiBj ∈ Gr,s, then ri+ sj ≡ 0 (mod N) and

AiBj(xrys) = ζri+jsxrys = xrys.

10



This implies xrys ∈ Kr,s. Now, assume 1 ≤ r, s and r + s ≤ N − 1. At a pole of x, the order of
any rational function of xN is a multiple of N . Then, xrys is not a rational function of xN because
r + s ≤ N − 1. In addition, AiBj fixes xrys if and only if ζri+sj = 1, which happens if and only if
AiBj ∈ kerχr,s. Therefore, Gal(K/C(xN , xrys)) = Gr,s, hence Kr,s = C(xN , xrys).

Define
u = xN , v = xrys.

Thus, u and v are related by
vN = ur(1− u)s.

However, the curve given by this equation is not normal. To get around this, we define Fr,s as the
normalization of the above curve, which turns out to have Kr,s as the quotient field of its ring of
fractions.

We are interested in finding the genus of each curve Fr,s. Towards this end, we find a basis for the
space of holomorphic one-forms on Fr,s and recall that its dimension corresponds to the genus.

Proposition 3.2. [Mur93, Proposition 8.8] A basis for the holomorphic one-forms on Fr,s is given
by

{ω〈mr〉,〈ms〉 : 1 ≤ m ≤ N, 1 ≤ 〈mr〉, 〈ms〉, 〈ms〉+ 〈ms〉 ≤ N − 1},

where 〈a〉 is the number such that 0 ≤ 〈a〉 < N and a ≡ 〈a〉 (mod N).

Proof. To begin, we have that for all r, s ≤ 1 such that r + s ≤ N − 1,

χ〈mr〉,〈ms〉(A
iBj) = ζ〈mr〉i+〈ms〉j = ζ(ri+sj)m = ζmri+msj = ζ(ri+sj)m = χmr,s.

Hence, x〈mr〉y〈ms〉 is in Kr,s and ω〈mr〉,〈ms〉 is a one-form on Fr,s. Also, consider a holomorphic
one-form ω on Fr,s such that

ω =
∑

cq,tωq,t.

If cq,t 6= 0, χq,t(g) = 1 for all g ∈ Gr,s. However, since the characters are independent and non-trivial,
it must be true that kerχq,t = kerχr,s, which implies

χq,t = χmr,s = χ〈mr〉,〈ms〉.

Thus, q = 〈mr〉 and t = 〈ms〉. This concludes the proof because the forms ωq,t are linearly
independent.

Corollary 3.3. Fr,s has genus
1

2
(N − 1) where r, s ≥ 1 and r + s ≤ N − 1.

Remark. Kr,k = Kq,t if and only if q = 〈mr〉 and t = 〈mk〉 for some m. Therefore, we can consider
m = r−1 and we get that Kr,k = K1,k.

From the previous remark, we can simply consider the fields K1,k for 1 ≤ k ≤ N − 2. We define the
corresponding curve F1,k as Fk, which plays an important role in next section.
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3.3 Jacobian of the Fermat curves

In this section, we present an isogeny that gives another way of describing the Jacobians of Fermat
curves. We also give examples of how this result can be used to describe the Jacobian of F (5) and
F (7).

Let JN be the Jacobian of the Fermat curve F (N). Considering the definition of Fk given in the
previous section, we construct the map

fk : F (N) → Fk
(x, y) 7→ (xN , xyk).

This map induces
fk,∗ : JN → Jac(Fk), (3.2)

where, for points, fk,∗(P ) = fk(P ) and, for divisors, the map is extended linearly.

Similarly, we can define the pullback

f∗k : Jac(Fk) → JN , (3.3)

where, given a point P ∈ Fk, we consider Q1, . . . , Qr as the distinct points of F (N) lying above
P (under fk) with multiplicities e1, . . . , er. Then, f∗k (P ) =

∑r
i=1 eiQi and we linearly extend this

definition.

Here A and B are as defined in Equation 3.1.

Proposition 3.4. The following equation holds

f∗k ◦ fk,∗ =

N−1∑
j=0

(A−kB)j . (3.4)

as a map F (N)→ F (N).

Proof. For all (x, y) ∈ fk,

f∗k ◦ fk,∗(x, y) = f∗k (xN , xyk).

Also, the points lying above (xN , xyk) are the points (x̃, ỹ) such that

(x̃N , x̃ỹk) = (xN , xyk).

The equality implies, x̃ = ζix, for ζ the chosen N−th primitive root of unity and 0 ≤ i ≤ N − 1.
Since (x, y) is a point in F (N), it is also true that ỹ = ζjy for some j with 0 ≤ j ≤ N − 1. The fact
that xyk = x̃ỹk implies ζiζjk = 1 and for that i = −jk. Hence, (x̃, ỹ) = (A−kB)j(x, y) for some
0 ≤ j ≤ N − 1. This proves the claim.

After those preliminaries, we are ready to state the most important theorem of this section.

Theorem 3.5. [Mur93, Proposition 8.10] There is an isogeny

JN ∼C

N−2∏
k=1

Jac(Fk).
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Proof. We will define a map that is multiplication by N . This is enough to show we have an isogeny
because the dimension as complex vector spaces coincide:

1

2
(N − 1)(N − 2) =

N−1∑
k=1

1

2
(N − 1).

In order to obtain this map, define

f∗ :
N−2⊕
k=1

fk,∗ : JN →
N−2⊕
k=1

Jac(Fk),

f∗ :
N−2⊕
k=1

Jac(Fk)→ JN ,

using the functions described in Equations 3.2 and 3.3. Then, Equation 3.4 implies

f∗ ◦ f∗ =
N−2∑
k=1

N−1∑
j=0

(A−kB)j . (3.5)

To show this map is multiplication by N in divisor classes, it is enough to prove it for differentials
of the first kind [Lan82, Theorem IV.5.6]. When we use Equation 3.5 with the basis {ωr,s} of the
dual space, we get

f∗ ◦ f∗(ωr,s) =
N−2∑
k=1

N−1∑
j=0

ζ−krj+sjwr,s.

Now, if −kr + s 6≡ 0 (mod N), then

N−1∑
j=0

ζ−krj+sj =

N−1∑
j=0

ζj = 0.

Similarly, if −kr + s ≡ 0 (mod N), we have

N−1∑
j=0

ζ−krj+sj =

N−1∑
j=0

1 = N.

In addition, there is a unique k such that the last condition holds and for this,

f∗ ◦ f∗(ωr,s) = Nwr,s.

The previous theorem can be used to compute explicitly the rational points of the Jacobian of
some Fermat curves. We will explain this method in the next chapter, where we need the explicit
structure of J5(Q) and J7(Q).

Example 3.6. J5(Q)tor ∼= (Z/5Z)r for some r.
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Proof. From the proof of Theorem 3.5, we know that there is an isogeny given by multiplication by
5 between J5 and the product of Jac(Fk) for 1 ≤ k ≤ 3. Hence, for all prime ` 6= 5,

J5[`
∞](Q) =

3∏
k=1

Jac(Fk)[`
∞](Q).

However, by [GR78, Theorem 1.1], the torsion of Jac(Fk) is isomorphic to Z/5Z, for which the
`−primary part is trivial and thus, the `−primary part of J5(Q) is trivial too.

Remark. One can prove that J5(Q)tor ∼= (Z/5Z)2. For details, see [KT97, Theorem 2].

Example 3.7. J7(Q) is isomorphic to (Z/2Z)2 × (Z/7Z)2.

Proof. In [Tze98, Theorem 2], Tzemias concludes that the following is true:

(i) For a prime ` 6= 2, 7, the group J7[`∞](Q) is trivial.

(ii) The group J7[7∞](Q) is isomorphic to (Z/7Z)2 and is generated by

[(0,−1, 1)− (−1, 1, 0)] and [(−1, 0, 1)− (−1, 1, 0)].

To find the 2−primary part, we use the same idea as the case N = 5. By the isogeny of Theorem 3.5,
it is enough to find the 2−primary part of each Jk. To do so, we use the result of Gross and Rohrlich
given in [GR78, Theorem 1.1] which states

Jac(Fk)(Q)tor ∼=

{
Z/7Z× Z/2Z if 1 ≡ k3 ≡ (6− k)3 (mod 7)

Z/7Z otherwise.

The only k ≤ 5 such that 1 ≡ k3 ≡ (6− k)3 (mod 7) are k = 2 or k = 4, which gives two copies of
Z/2Z and thus

J7[2
∞](Q) ∼= (Z/2Z)2.
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4 Rational points of low degree

In this chapter our goal is to describe the points on the Fermat curves which are defined over number
fields of low degree (depending on N). We define Γd as the union of all number fields of degree at
most d. The following theorem is a result from Debarre and Klassen that gives a corollary about
Fermat curves.

Theorem 4.1. [DK94, Theorem 1] Let C be a smooth projective plane curve defined by an equation
of degree d ≥ 7 with rational coefficients. Then C has only finitely many points whose field of
definition has degree ≤ d− 2 over Q.

Corollary 4.2. For all prime N greater than 5, F (N)(ΓN−2) is a finite set.

The result is also true for the Fermat curve of degree 3 since the only solutions defined over Q are
the trivial ones. In the following section, we prove the result for N = 5. Then we can conclude that
for all N ≥ 3, F (N)(ΓN−2) is a finite set.

4.1 The Fermat quintic

In this section, we study the rational points of degree at most 6 on F (5) by using its Jacobian
variety. Fermat’s Last Theorem gives that the only Q−rational points on F (5) are

a = (0, 1, 1), b = (1, 0, 1), c = (−1, 1, 0).

We also consider the points of degree two

P = (η, η, 1), P = (η, η, 1),

with η a primitive 6−th root of unity and η its conjugate such that η + η = 1. The minimal
polynomial of η is x2 − x+ 1 and P and P are points on F (5). In [GR78, Theorem 5.1], Gross and
Rohrlich showed

F (5)(Γ2) = {a, b, c, P, P}. (4.1)

In addition, we will show there are no points of degree three in the Fermat quintic. We will follow
the method used in [Tze98] for the Fermat curve of degree seven. To prove this fact, we first need
to find the rational points in the Jacobian of F (5).

To start, let K be the cyclotomic field Q(ζ), where ζ is a primitive 5th root of unity. In addition,
define ε as a 10−th root of unity such that ε2 = ζ.

Definition 4.3. The points at infinity are the following K-rational points on F5:

aj = (0, ζj , 1), bj = (ζj , 0, 1), cj = (εζj , 1, 0),

where 0 ≤ j ≤ 4.

Remark. With the above definition, a = a0, b = b0 and c = c2.

Theorem 4.4. [KT97, Theorem 2] The group J5(Q) is isomorphic to (Z/5Z)2. The divisor classes
[c− a] and [c− b] form a basis for J5(Q) as a Z/5Z-vector space.

Using the structure of the rational points in the Jacobian, we will be able to show our main result
after proving the following lemmas.
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Lemma 4.5. L (11c) is a vector space of dimension six with a basis given by the functions

1,
1

x+ y
,

x

x+ y
,

1

(x+ y)2
,

x

(x+ y)2
,

x2

(x+ y)2
. (4.2)

Proof. In [Roh77], it is shown that

Div(x) = (a0 + · · ·+ a4)− (c0 + · · ·+ c4)
Div(x+ y) = 4c− (c0 + c1 + c3 + c4).

(4.3)

Therefore, all the functions in Equation 4.2 are in L (11c). They are also linearly independent so
it suffices to prove that l(11c) = 6. To find the dimension of L (11c), we use the inequalities

l(kc) ≤ l((k + 1)c) ≤ l(kc) + 1.

We have an equality on the left if and only if k+1 is a Weierstrass gap sequence of c. The Weiestrass
gap sequence of c is 1, 2, 3, 6, 7, 11, . . . [ACGH85, Exercise E-11]. Thus, given that l(c) = 1, we
get l(kc) = 1 for 1 ≤ k ≤ 3, l(4c) = 2, l(kc) = 3 for 5 ≤ k ≤ 7, l(8c) = 4, l(9c) = 5 and l(kc) = 6
with 10 ≤ k ≤ 11.

Lemma 4.6. Let La, Lb and Lc be the lines tangent to F (5) at a, b and c respectively, then

(i) La, Lb and Lc have contact of order 5 with the points a, b and c respectively.

(ii) If C is a plane conic with contact of order 3 with a, b or c, then C is reducible and contains
La, Lb or Lc respectively.

Proof. For the first fact, an affine open set where a lies is z 6= 0. Thus, the line tangent to F (5) at
a is y = 1. However, the only point of intersection of y = 1 and x5 + y5 = 1 is a, which implies the
tangent line at a has contact of order 5 at a. Using the same idea, it is possible to prove the result
for b and c. For the second , it is necessary to use that if F , H and G are plane curves such that F
is irreducible and is not a component of G or H, then

min{ordP (F ∩G), ordP (F ∩H)} ≤ ordP (G ∩H),

with P any non-singular point of F [Nam79, Theorem 2.3.2]. If we take F ∈ {La, Lb, Lc}, G = F (5)
and H = C, where C is a plane conic, we get the desired result for (ii).

With this result, we can prove the following theorem. Although the theorem is known, we are
presenting a new proof that is suggested in [Tze98] but which has not been found in the literature.

Theorem 4.7. F (5)(Γ3) = {a, b, c, P, P}. In particular, there are no elements of degree three on
F (5).

Proof. By Equality 4.1, it is enough to show there is no point of degree three on F (5). Assume
towards a contradiction that there exists a point R1 on F (5) of degree three over Q and let R2 and
R3 be its Galois conjugates. In particular, R1, R2 and R3 are not elements in F (5)(Γ2).

Now, consider the divisor of degree zero R1 +R2 +R3 − 3c. Such a divisor is rational because it is
invariant under any automorphism of Q fixing Q. By Theorem 4.4, there are integers 0 ≤ d, e ≤ 4
such that

D := R1 +R2 +R3 − 3c− d(c− a)− e(c− b)
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is a principal divisor, thus D = 0 in J5(Q). Hence, the coefficient of c is between −11 and −3 and
thus, the divisor is in L (11c). By Lemma 4.5, there is a polynomial f(x, y) of degree two such that

Div

(
f(x, y)

(x+ y)2

)
= R1 +R2 +R3 + da+ eb− (3 + d+ e)c.

Using equation 4.3,
Div((x+ y)2) = 10c− 2(c0 + c1 + c2 + c3 + c4).

This implies

Div(f(x, y)) = R1 +R2 +R3 + da+ eb+ (7− d− e)c− 2(c0 + c1 + c2 + c3 + c4).

Note that f(x, y) is a quotient of a homogeneous quadratic polynomial g by Z2. Let C be the curve
given by g = 0. Since F (5) is a smooth plane curve,

Div(f(x, y)) = C ∩ F5 − 2(c0 + c1 + c2 + c3 + c4).

Combining the previous equations,

C ∩ F5 = R1 +R2 +R3 + da+ eb+ (7− d− e)c.

If d ≥ 3, Lemma 4.6 implies that C is reducible and contains La. The lemma also shows that La
has contact of order 5 with a. However, d ≤ 4 and none of the points Ri is a by hypothesis, a
contradiction. Hence, d < 3 and similarly, e < 3. Therefore 3 ≤ 7 − d − e ≤ 7. By the same
argument, 3 ≤ 7 − d − e ≤ 4 is impossible. Then we get 5 ≤ 7 − d − e ≤ 7, which, by Lemma 4.6
implies that C is reducible and contains Lc. Hence, there is a line L such that

L ∩ F5 = R1 +R2 +R3 + da+ eb+ (2− d− e)c

Any combination of 0 ≤ d, e ≤ 2 implies the line L has two points in common with the lines La, Lb,
Lc or X + Y = Z (possible with multiplicities). However, L can not be La, Lb or Lc because its
divisor does not have coefficient greater than 4 for a, b or c. Furthermore, L cannot be X + Y = Z
because this line contains P and P and, by hypothesis, none of the points Ri is P or P . Therefore,
L can not exist, a contradiction. We conclude that there are no points of degree three on F (5).

A special corollary of the theorem describes more geometrically the points of degree less than 4 on
F (5). We will show the same result for F (7) and it has been conjectured that this is the case for
all primes. For details see [KT97].

Corollary 4.8. All the points in F (5)(Γ3) lie on the line X + Y = Z.

It is also possible to describe geometrically all the points in F (5)(Γ6). We will show a characteriza-
tion given by Klassen and Tzermias in [KT97].

Definition 4.9. Consider a point R ∈ F (5)(Q̄) of degree d over Q, with 4 ≤ d ≤ 6, and let
R2, . . . , Rd be its Galois conjugates. Also, let

• L′ be a plane Q−rational line;

• P ′ be one of the points {a, b, c};

• C ′ be a plane Q−rational conic with contact of order 2 with F (5) at each point in one of the
pairs (a, b), (b, c), (a, b) or (P, P );
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• t(C ′) be the divisor 2a+ 2b, 2b+ 2c, 2a+ 2b or 2P + 2P , depending on the pair chosen before.

Then R is called a trivial point if one of the following holds

(a) R+R2 + · · ·+Rd = F5 ∩ L′ − P ′;

(b) R+R2 + · · ·+Rd = F5 ∩ L′;

(c) or R+R2 + · · ·+Rd = F5 ∩ C ′ − t(C ′);

Remark. By Bezout’s Theorem [Mir95, Theorem V.2.13], the degrees of the trivial points of types
(a), (b) and (c) are 4, 5 and 6, respectively.

We can now state the result which completely describes the elements in F (5)(Γ6).

Theorem 4.10. [KT97, Theorem 1] F (5)(Γ6) consists of F (5)(Γ2) and the trivial points.

This theorem also gives us a good tool to describe the points of certain degree algebraically. For
example, in [Kra17, Theorem 2], Kraus proves the following theorem by using Theorem 4.10.

Theorem 4.11. Suppose that F (5)(K) has a non-trivial point of degree 4. One of the following
conditions is satisfied:

1. the Galois closure of K is a dihedral extension of Q of degree 8.

2. One has K = Q(α) with

31α4 − 36α3 + 26α2 − 36α+ 31 = 0.

The extension K/Q is cyclic. Up to Galois conjugation and permutation, (2, 2α,−α − 1) is
the only non-trivial point in F (5)(K).

To prove Theorem 4.10, we need some results involving the Jacobian of F (5) and the Abel-Jacobi
map. Let C be a smooth plane quintic which, by Plücker’s formula, has genus 6. We can describe
the classes of divisors of degree 6 over C as the fibers of the Abel-Jacobi map

f (6) : C(6) → Jac(C).

For all x ∈ Jac(C), we define fx as (f (6))−1(x), that is, as a set of divisors of degree 6. Let D be a
divisor in fx. Then, there are several possibilities:

(i) fx = {D}, l(D) = 1;

(ii) fx = |D|, l(D) = 2, and D contains 4 collinear points;

(iii) fx = |D| and D contains 5 collinear points;

(iv) fx = |D| and D consists of 6 points on a conic.

Lemma 4.12. [KT97, Lemma 1] If C is a smooth plane quintic, then the fibers of the Abel-Jacobi
map are completely described by the cases (i)− (iv) above.
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Proof. Let D be an effective divisor of degree 6 in C. We show that if l(D) > 1, then D falls into
one of the cases (ii) − (iv). Therefore, we need the version of the Riemann-Roch Theorem which
states

(l(D)− 1)− i(D) = deg(D)− g,

where i(D) is the dimension of the vector space of effective meromorphic one-forms such that
(ω) ≥ D [Mir95, Theorem VI.3.11]. In our case, the theorem implies

l(D)− 1 = i(D). (4.4)

By Clifford’s theorem [ACGH85, Section III.1], we know that l(D) − 1 ≤ 2. Finally, if D is con-
structed as before and l(D) > 1, then the points of D lie on a conic.

If the conic is irreducible, then it must be the only conic containing the six points of D and we are
in case (iv).

Similarly, if the conic consists of two lines, we have at maximum 3, 4 or 5 collinear points. Having
6 collinear points is not possible because the points are in C, a plane quintic. If we have 3 points
on each line, the lines are unique and the conic is the only one that passes through those points.
By the same argument as in the irreducible conic, this is case (iv). Finally, if we have 4 points on
the same line, D is in case (ii) and for 5 points, D is in case (iii).

Lemma 4.13. Let L′ be a plane line and C ′ be a plane conic. Consider an effective Q−rational
divisor D on F (5) of degree 4, 5 or 6 such that D < F (5) ∩ L′, D = F (5) ∩ L′ or D < F (5) ∩ C ′,
respectively. Then the corresponding line L′ or conic C ′ is Q−rational.

Proof. Consider σ ∈ Gal(Q̄/Q). If D = F (5)∩L′−E, with E an effective divisor of degree 1, then
D = Dσ = F (5) ∩ L′σ −Eσ. Therefore, L′ and L′σ have at least 3 points in common. Since L′ and
L′σ are lines, L′ = L′σ and L′ is Q−rational. Following the same idea, we can prove the analogous
result for the divisors of degree 5 and 6.

Proof. (Theorem 4.10), sketch. Using Lemma 4.12, one can find explicitly the 25 divisor classes for
J5(Q), call them D1, . . . , D25. Since J5(Q) is generated by [a− c] and [b− c], we get that

J5(Q) = {[D − 6c] : D = D1, . . . , D25}.

It is important to note that we can place each divisor into one of the cases of Lemma 4.12.

Consider a point R on F (5) of degree k = 4, k = 5 or k = 6 and let R2, . . . , Rk be its Galois
conjugates. For each case, define the divisor D as follows

D = R+R2,+ · · ·+Rk + (6− k)c.

The poof of the theorem is done by degree. We want to use the fact that D is in one of the cases
(i)− (iv) of Lemma 4.12 thus that either R has a lower degree than the assumed one or that R is
a trivial point. Lemma 4.13 ensures that R is a trivial point because we get Q−rational lines or
conics.
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4.2 The Fermat curve of degree seven

To describe points of low degree over the Fermat curve of degree 7, we use Example 3.7. This
method is similar to the one used in Section 4.1. By [GR78, Theorem 5.1], there are exactly five
points in F (7)(Γ3) given by

a = (0, 1, 1), b = (1, 0, 1), c = (−1, 1, 0).

P = (η, η, 1), P = (η, η, 1),
(4.5)

with η a primitive 6−th root of unity and η its complex conjugate. The main result is the following
theorem.

Theorem 4.14. [Tze98, Theorem 1] For all number fields K such that [K : Q] ≤ 5, we have
F (7)(K) ⊆ {a, b, c, P, P}.

The proof uses the same idea as the proof of Theorem 4.7 in combination with Example 3.7. For
details, see [Tze98].

4.3 Further cases

The methods described in sections 4.1 and 4.2 to find rational points on Fermat curves using the
rational points in the corresponding Jacobians do not work when N ≥ 11 because J(N)(Q) is infi-
nite. This was proven by Gross and Rohrlich in [GR78, Theorem 2.1], by finding a point of infinite
order on Jac(Fk)(Q) for k 6= 1.

A weaker, but similar result to the ones obtained before is given for N = 11 by the same authors,
in [GR78, Theorem 5.1]. It states that

F (11)(Γ5) = {a, b, c, P, P̄},

where the elements of the set above are defined as in Equation 4.5.

As remarked in Corollary 4.2, the strongest result that we have for all prime N > 11 is due to
Debarre and Klassen and states that F (N)(ΓN−2) is finite.

Finally, there are several known results for an analogy of Fermat’s Last Theorem in some number
fields. Jarris and Meekin proved in 2004 that for N ≥ 4, the only points on the curve xN +yN = zN ,
defined overQ(

√
2), are those where xyz = 0 [JM04, Theorem 1.3]. Later, in 2014, Freitas and Siksek

extended this result for quadratic real fields Q(
√
d) with d ∈ {3, 6, 7, 10, 11, 13, 14, 15, 19, 21, 22, 23}

[FS15b, Theorem 1]. The main result in answering the question is related to the asymptotic Fer-
mat’s Last Theorem.

For K a field, the asymptotic Fermat’s Last Theorem over K states: there is a constant BK such
that for any prime exponent p > BK , the only solutions to the Fermat equation

ap + bp + cp = 0, a, b, c ∈ K

are the trivial ones satisfying abc = 0. Freitas and Siksek proved in 2015 that for real quadratic
fields, there is a set of fields of density 5/6 such that the asymptotic Fermat’s Last Theorem holds
[FS15a, Theorem 4.].
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