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Abstract

This manuscript consists of two parts. In the first part, we study generalizations of

modular curves: triangular modular curves. These curves have played an important

role in recent developments in number theory, particularly concerning hypergeometric

abelian varieties and approaches to solving generalized Fermat equations. We pro-

vide a new result that shows that there are only finitely many Borel-type triangular

modular curves of any fixed genus, and we present an algorithm to list all such curves

of a given genus.

In the second part of the manuscript, we explore the problem of computing the set

of rational points on a smooth, projective, geometrically irreducible curve of genus

g > 1 over Q. We study the geometric quadratic Chabauty method, which is an

effective method for producing a finite set of p-adic points containing the rational

points of the curve. This method is due Edixhoven and Lido [36]. We overview the

method and discuss explicit algorithms for finding rational points. We also present a

comparison is with the classical (cohomological) quadratic Chabauty method.
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Chapter 1

Introduction

This manuscript consists of two parts. In both parts, we study curves and rational

points.

The first part of this thesis consists of joint work with John Voight. The main

results from chapters 3 and 4 are published in [35], and chapter 5 contains new results.

The second part of this thesis is joint work with Sachi Hashimoto and Pim Spelier

that can be found in the preprint [32].

Section 1.1

Triangular modular curves

Modular curves are of immense significance in arithmetic geometry. They have been

the focus of extensive research for over a century and have played a crucial role in

understanding elliptic curves and solutions to Diophantine equations. In this first part

of the thesis, we study generalizations of modular curves called triangular modular

curves. These curves are quotients of the (completed) complex upper-half plane

by congruence subgroups of triangle groups in the sense of Clark–Voight; note the
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1.1 Triangular modular curves

corresponding groups, in general, are not arithmetic. In particular, we focus on

classifying triangular modular curves by genus and enumerating the ones with low

genus. One of the primary motivations for this work is that the study of triangular

modular curves has the potential to contribute to the field of arithmetic geometry,

similar to classical modular curves.

Low genus problems

For an integer N ≥ 1, let Γ0(N),Γ1(N) ≤ SL2(Z) be the usual congruence sub-

groups and let X0(N), X1(N) be the corresponding quotients of the completed upper

half-plane. The genera of X0(N) and X1(N) as compact Riemann surfaces can be

computed using the Riemann–Hurwitz formula [31, p. 66], and it can readily be seen

that there are only finitely many of any given genus g ≥ 0.

The study of modular curves of small genus goes back at least to Fricke [39,

p. 357]. At the end of the twentieth century, Ogg enumerated and studied elliptic [57]

and hyperelliptic [59] modular curves; the resulting Diophantine study [58] informed

Mazur’s classification of rational isogenies of elliptic curves [53], where the curves

of genus 0 are precisely the ones with infinitely many rational points. This explicit

study continues today, extended to include all quotients of the upper half-plane by

congruence subgroups of SL2(Z); the list up to genus 24 was computed by Cummins–

Pauli [28]. Recent papers have studied curves with infinitely many rational points

in the context of Mazur’s Program B—see Rouse–Sutherland–Zureick-Brown [61] for

further references and recent results in this direction.

Given this rich backdrop, it is worthwhile to pursue generalizations. For example,

replacing SL2(Z) with its quaternionic cousins, Voight [72] enumerated all Shimura

curves of the form X1
0 (D,M) of genus at most 2. In a similar direction, Long–

2



1.1 Triangular modular curves

Maclachlan–Reid [49] enumerated all maximal arithmetic Fuchsian groups of genus 0

over Q. These groups correspond to quotients of Shimura curves by the full group of

Atkin–Lehner involutions.

Setup

Let a, b, c ∈ Z≥2 ∪ {∞} and define

χ(a, b, c) :=
1

a
+

1

b
+

1

c
− 1

so that χ(a, b, c)π measures the difference from π of the sum of the angles of a triangle

with angles π/a, π/b, π/c. If χ(a, b, c) ≥ 0, then such a triangle is drawn on the sphere

or Euclidean plane, and these are very classical. Otherwise, we have χ(a, b, c) < 0, and

we say that the triple (a, b, c) is hyperbolic, as then the triangle lies in the (completed)

upper half-planeH. We focus on the hyperbolic case. Let ∆(a, b, c) ≤ PSL2(R) be the

subgroup of orientation-preserving isometries of the group generated by reflections in

the sides of the triangle described above. Then ∆(a, b, c) can be presented as

∆(a, b, c) := ⟨δa, δb, δc | δaa = δbb = δcc = δaδbδc = 1⟩,

where δs corresponds to a counterclockwise rotation at the vertex with angle 2π/s.

Because of the associated map ∆(a, b, c) ↪→ PSL2(R), the group ∆(a, b, c) acts

by isometries on H. Then we define the triangular modular curve X(a, b, c) as the

quotient of H by the action of ∆(a, b, c) as above. In more generality, a triangular

modular curve is the quotient of H by a congruence subgroup of ∆(a, b, c) as follows.

The first step is to define level structure. For s ∈ Z≥2 ∪{∞}, let ζs := exp(2πi/s)

3



1.1 Triangular modular curves

and let λs := ζs + 1/ζs = 2 cos(2π/s), with ζ∞ = 1 and λ∞ = 2 by convention.

Let E = E(a, b, c) := Q(λa, λb, λc, λ2aλ2bλ2c) be the invariant trace field. For every

nonzero ideal N of ZE not dividing 2abc, there is a homomorphism

ϖN : ∆(a, b, c) → PGL2(ZE/N).

Intuitively, this homomorphism can be thought of as reducing matrix entries modulo

N, but it has a rigorous quaternionic interpretation. If the image of the generators of

∆(a, b, c) has orders (a′, b′, c′) ̸= (a, b, c), then ϖN factors through ∆(a′, b′, c′). This

isomorphism is the reason why we only focus on admissible triples (a, b, c) for N,

triples such that the order of the image of the generators under ϖN are exactly a, b,

and c.

We define Γ(a, b, c;N) := ker πN as the principal congruence subgroup of level N

and

X(a, b, c;N) := Γ(a, b, c;N)\H

as the principal triangular modular curve of level N. Following the analogy with

classical modular curves, we also consider quotients of H by subgroups Γ0(a, b, c;N)

and Γ1(a, b, c;N) coming from upper-triangular matrices. These quotients give rise

to the Borel–type triangular modular curves X0(a, b, c;N) and X1(a, b, c;N). These

are the main objects of study in this part of the thesis.

Some interesting features of triangular modular curves are the following. There are

only finitely many arithmetic triangle groups [69, 68]. Hence, most triangular modular

curves are not arithmetic, falling outside the Langlands program’s scope. The Galois

group and field of definition of these curves is characterized in [21], following the work

4



1.1 Triangular modular curves

of Macbeath [50]. It turns out that, triangular modular curves are not necessarily

defined over Q [21, Theorem B].

Main result

In [21], Clark and Voight study the existence, construction, and properties of trian-

gular modular curves. We build upon this work and show there are finitely many

Borel–type triangular modular curves of any fixed genus. The main theorem is as

follows.

Theorem A (Theorem 5.6.1). For any g ∈ Z≥0 there are finitely many triangular

modular curves X0(a, b, c;N) and X1(a, b, c;N) of genus g with nontrivial admissible

level N. Moreover, we present an algorithm to list all such curves of a given genus.

We implemented the algorithm presented in Theorem A in Magma [17]; the code

is available online [34].

We run this algorithm to enumerate all triangular modular curves X0(a, b, c;N)

and X1(a, b, c;N) of genus g with nontrivial admissible level N of genus 0, 1, and 2.

The list in computer-readable format with additional data can be found in [34]. For

the list with g = 0, 1 and prime level, see appendix A.

The number of curves of genus at most 2 are as follows:

genus

0 1 2

X0(a, b, c;N) 76 268 485

X1(a, b, c;N) 7 9 13
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1.1 Triangular modular curves

Applications

Our theorem has potential applications in arithmetic geometry analogous to classical

modular curves. Just as the quotient of the upper half-plane by PSL2(Z) is the set

of complex points of the moduli space of elliptic curves (parametrized by the affine

j-line), Cohen–Wolfart [22, section 3.3] and Archinard [1] showed that the curves

X(a, b, c) over C naturally parametrize hypergeometric abelian varieties, certain Prym

varieties of cyclic covers of P1 branched over ≤ 4 points.

More generally, in the same way as classical modular curves parametrize ellip-

tic curves equipped with level structure, triangular modular curves parametrize hy-

pergeometric abelian varieties equipped with level structure: see upcoming work of

Kucharczyk–Voight [47]. In this light, our work classifies those situations where we

might parametrize infinitely many such varieties with (nontrivial Borel-type) level

structure.

As a final possible Diophantine application, we recall the work of Darmon [29]: he

provides a dictionary between finite index subgroups of the triangle group ∆(a, b, c)

and approaches to solve the generalized Fermat equation xa + yb + zc = 0. From this

vantage point, the triangular modular curves of low genus “explain” situations where

the associated mod N Galois representations are reducible.

Future work

In future work, we plan to compute equations for these curves (as Belyi maps) us-

ing the methods of Klug–Musty–Schiavone–Voight [45] and then study their rational

points. Even without these equations, we have verified that all but a handful of the

genus zero curves necessarily have a ramified rational point (hence are isomorphic to

P1 over any field of definition).

6



1.1 Triangular modular curves

To conclude, we peek ahead to more general triangular modular curves, allowing

other congruence subgroups Γ ≤ Γ(a, b, c;N) (prescribing other possible images of the

corresponding Galois representations). For the case ∆ = PSL2(Z), the story is a long

and beautiful one, originating with a conjecture of Rademacher that there are only

finitely many genus 0 congruence subgroups of PSL2(Z). Thompson [70] proved this

for any genus g. The list of Cummins–Pauli for curves of up to genus 24 relies upon

intricate and delicate p-adic methods of Cox–Parry [27] for an explicit bound on the

level in terms of the genus. We propose the following conjecture, which predicts a

similar result for triangular modular curves.

Conjecture B. For all g ∈ Z≥0, there are only finitely many admissible triangular

modular curves of genus g.

We consider our main result (Theorem A) as partial progress towards this conjec-

ture. The Borel–type subgroups are the family with the smallest growing index, thus

likely to have the smallest genera. It would be interesting to see if the rather delicate

p-adic methods of Cox–Parry can be generalized from PSL2(Z/NZ) to groups of the

form PXL2(ZE/N), as this would imply Conjecture B effectively.

Organization

We start in chapter 2 by introducing triangle groups, their relation with quaternion

algebras, and the definition of congruence subgroups of triangle groups. This chapter

concludes with the first encounter with triangular modular curves. In chapter 3, we

focus on the definitions of Borel-type congruence subgroups for triangular modular

curves of prime level. We prove Proposition 3.2.6, where we define the relevant ma-

trix representation of ∆, and Theorem 3.3.1, describing its image building on work

7



1.2 Geometric quadratic Chabauty

of Clark–Voight [21]. Moving on to chapter 4, we present some of the main building

blocks of our work. We prove Theorem 4.2.4, which uses Riemann-Hurwitz to explic-

itly compute the genus of the triangular modular curves X0(a, b, c; p) for p a prime

ideal. Then we can show that there are finitely many admissible curves X0(a, b, c; p)

of bounded genus for any g ≥ 0 in Corollary 4.4.6 and present an algorithm to enu-

merate them in Algorithm 4.5.2. We use these ideas to show similar results for curves

X1(a, b, c; p). Finally, chapter 5 generalizes the results of the previous chapters to

curves X0(a, b, c;N) and X1(a, b, c;N) of composite level, and it ends with the proof

of Theorem A in section 5.6.

Section 1.2

Geometric quadratic Chabauty

Let XQ be a smooth, projective, geometrically irreducible curve of genus g > 1 over

Q. The problem of describing XQ(Q), the set of rational points of XQ, has fascinated

mathematicians for centuries. Mordell’s famous conjecture states that for g > 1, the

set XQ(Q) is finite. In [38], Faltings proves this conjecture and the result is known

as Faltings’s theorem. However, Faltings’s theorem is not effective, meaning it does

not give a method to determine the set of rational points. In this part of the thesis,

we focus on studying the geometric quadratic Chabauty method [36]. This algebro-

geometric method describes the rational points on curves with specific properties (as

explained below).

8



1.2 Geometric quadratic Chabauty

Computing (finite) sets of rational points

There is still an ongoing effort to find explicit methods to compute the finite set

XQ(Q) when g > 1. Chabauty’s theorem [20] gives a finiteness result for XQ(Q) on

certain curves by using p-adic analysis. This was made effective by Coleman [23]

through the development of Coleman integration; he gave a method to find p-adic

power series that vanish on a superset of XQ(Q) for the curves Chabauty considered.

This breakthrough is the starting point for the Chabauty–Kim program [44] of p-adic

methods for proving the finiteness of XQ(Q) generalizing Chabauty and Coleman’s

method. The quadratic Chabauty method [7, 9, 10, 36, 13] is an effective instance of

the Chabauty–Kim method, first developed by Balakrishnan and Dogra, for studying

the rational points of XQ.

Quadratic Chabauty

Let JQ be the Jacobian of XQ, with Mordell–Weil rank r and Néron–Severi rank

ρ := rkNS(JQ) > 1. Let p > 2 be a prime, not necessarily of good reduction for

XQ. Quadratic Chabauty is an effective p-adic method for producing a finite set of

p-adic points containing the rational points of XQ. There are several approaches to

the quadratic Chabauty method. The (original) cohomological quadratic Chabauty

method [9, 10] studies XQ(Q) using p-adic height functions and works in certain

Selmer varieties (for p of good reduction). This method is effective when g = r and

has been applied to determine the rational points on many modular curves [2, 11],

including the cursed curve [3], a famously difficult problem. The geometric quadratic

Chabauty method [36] is an algebro-geometric method for quadratic Chabauty, which

can be applied when r < g+ρ− 1. The computations take place in Gρ−1
m -torsors over

JQ.

9



1.2 Geometric quadratic Chabauty

Main results

We compare the geometric and cohomological methods for quadratic Chabauty in the

cases where both methods can be applied. We prove the following theorem.

Theorem C (Comparison Theorem (Theorem 8.2.5)). Assume that p is a prime of

good reduction for XQ. Assume that r = g, ρ > 1, and furthermore the p-adic closure

JQ(Q) is finite index in JQ(Qp). Assume there exists a rational base point b ∈ XQ(Q).

Let XQ(Qp)Coh be the finite set of p-adic points defined under these assumptions in

[9, Theorem 1.2]. Let XQ(Zp)Geo be the finite set of p-adic points obtained with the

geometric Chabauty method. Then we have the inclusions

XQ(Q) ⊆ XQ(Zp)Geo ⊆ XQ(Qp)Coh ⊆ XQ(Qp),

and we can explicitly characterize XQ(Qp)Coh \XQ(Zp)Geo.

In [41], Hashimoto and Spelier show that the classical Chabauty–Coleman method

[24] and the geometric linear Chabauty method [63] are related by a similar compar-

ison theorem.

Description of the method

The geometric quadratic Chabauty method studies the Poincaré torsor, the universal

Gm-biextension over JQ × JQ. By pulling back the Poincaré torsor by a nontrivial

trace zero morphism f : JQ → JQ, we can construct a nontrivial torsor T over the

Néron model of JQ whose restriction to XQ is trivial. This allows us to embed XQ

into T through a section. The idea of the geometric quadratic Chabauty method is

to intersect the image of the integer points on a regular model of XQ with the p-adic

closure of the integer points T (Z). This intersection contains XQ(Q).

10



1.2 Geometric quadratic Chabauty

Suppose that p is a prime of good reduction for XQ. We give new algorithms for

geometric quadratic Chabauty that work mainly in the trivial biextension Qg
p ×Qg

p ×

Qp. Working on the trivial biextension translates the geometric quadratic Chabauty

method into the language of Coleman–Gross heights [25] and Coleman integrals [23].

The main contribution of this paper is to explicitly give this translation into the

language of heights and Coleman integrals. This translation allows us to prove the

comparison theorem between the cohomological quadratic Chabauty method and the

geometric quadratic Chabauty method. We also give an algorithm to compute the

local heights away from p associated with the curveXQ. These heights are also studied

in [15].

We further leverage the language of p-adic heights to compute the embedding of

XQ into T and the integer points T (Z) as convergent power series. Then determining

up to finite p-adic precision, a finite set containing XQ(Q) reduces to solving simple

polynomial equations. Theoretically, by working modulo pk for large enough k ∈ N,

the geometric quadratic Chabauty method will always produce a finite set of p-adic

points with precision k containing XQ(Q).

Algorithms and example

In this manuscript, we also describe algorithms for finding the finite set of p-adic points

obtained by applying the geometric quadratic Chabauty method. These algorithms

are practical when XQ is a hyperelliptic curve. Our Magma [17] code implementing

these algorithms can be found in [33].

Finally, we present an example of our new method applied to the modular curve

X0(67)
+ and a trace zero endomorphism f arising from the Hecke operator T2. Even

though the rational points on this curve have already been determined [2], this pro-

11



1.2 Geometric quadratic Chabauty

vides a new way of analyzing the set of rational points and comparing both methods.

Organization

In chapter 6, we provide background on the Poincaré torsor and its realizations. Then

in chapter 7, we give an algorithm to construct the unique line bundle associated with

the endomorphism f from a divisor in U ×X satisfying specific properties described

in Lemma 7.1.3. Using this line bundle, we write a formula for the trivializing section

j̃b : U → T . We give an algorithm for computing the convergent power series describ-

ing the embedding of a residue disk of the curve into the biextension N in section 7.2.

In section 7.3, we give formulas for computing integer points in the biextension N

that are the image of generating sections of certain residue disks of M.

In chapter 8, we tie everything together. In section 8.1, we present the algorithm

for geometric quadratic Chabauty in a residue disk U(Z)P . The comparison theorem

appears in section 8.2. Theorem 8.2.5 states that the finite set of points found by the

cohomological quadratic Chabauty method is a superset of the points found by the

geometric method and gives an explicit description of the points in their difference.

Finally, section 8.3 shows a worked example of the algorithms applied to the curve

X0(67)
+.
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Triangular modular curves of low

genus
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Chapter 2

Preliminaries

This chapter presents basic definitions related to triangle groups, principal congruence

subgroups, and their associated quaternion algebras. We build upon this theory to

arrive at our first encounter with triangular modular curves in section 2.4. We base

this introduction on the work of Clark and Voight from [21]. We expand on joint

work with John Voight, published in [35].

Section 2.1

Triangle groups

Let a, b, c ∈ Z≥2 ∪ {∞}. Then consider a triangle with angles π/a, π/b, and π/c.

This triangle can be drawn on the Euclidean plane, sphere, or hyperbolic plane,

depending on the values of a, b, and c. The triangle group ∆(a, b, c) is the subgroup

of orientation-preserving isometries of the group generated by reflections in the sides

of the triangle described above, drawn in the appropriate geometry. Then we have a

presentation

∆(a, b, c) := ⟨δa, δb, δc | δaa = δbb = δcc = δaδbδc = 1⟩. (2.1.1)

14
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τa
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b

bb

b

b

b b

Figure 2.1: Triangle group (a, b, c) generated by δa, δb, δc (from [46, Figure 1]).

where δs corresponds to a counterclockwise rotation at the vertex with angle 2π/s. In

Figure 2.1, we see what these generators correspond to for a triangle in the hyperbolic

plane.

Example 2.1.2. The triangle group ∆(2, 3, 3) is isomorphic to the symmetry group of

the tetrahedron since these groups are both isomorphic to A4.

Example 2.1.3. The triangle group ∆(2, 3,∞) is isomorphic to PSL2(Z). Indeed, it is

a classical result that PSL2(Z) is generated by the elements

S :=

0 −1

1 0

 and T :=

1 1

0 1


(see for example [74, Lemma 35.1.12]). We note that the order of ST is 3 and that

S(ST )T = I, so we can choose δ2 = S, δ3 = (ST ), and δ∞ = T .

By cyclic permutation and inversion [21, Remark 2.2], we can reorganize the gen-

erators and suppose without loss of generality that

a ≤ b ≤ c. (2.1.4)
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2.1 Triangle groups

All of the triples (a, b, c) ∈ (Z ∪ {∞})3 that we consider in this manuscript are such

that a ≤ b ≤ c.

To decide on the appropriate geometry of the triangle, we let

χ(a, b, c) :=
1

a
+

1

b
+

1

c
− 1 (2.1.5)

so that χ(a, b, c)π measures difference from π of the sum of the angles of a triangle

with angles π/a, π/b, π/c. If χ(a, b, c) < 0, then such a triangle is drawn on the sphere

and if χ(a, b, c) = 0, then the triangle is drawn on the Euclidean plane; these are very

classical. Otherwise, χ(a, b, c) < 0 and we say that the triple (a, b, c) is hyperbolic,

as then the triangle lies in the (completed) upper half-plane H. We now prove a

well-known lemma that will be essential in future chapters.

Lemma 2.1.6. For a hyperbolic triple (a, b, c), we have

χ(a, b, c) ≤ χ(2, 3, 7) = − 1

42
(2.1.7)

bounded away from zero.

Proof. To maximize χ(a, b, c) with a, b, c ∈ Z≥2 ∪ {∞}, the values of a, b, c need

to be minimal. We have that χ(2, 3, 7) = −1/42. Also, we compute χ(a, b, c) for

2 ≤ a ≤ b ≤ c ≤ 7 with (a, b, c) hyperbolic and conclude that the maximum value of

χ(a, b, c) for a hyperbolic triple is attained when (a, b, c) = (2, 3, 7).

From now on, we suppose that the triple (a, b, c) is hyperbolic. Then there is an as-

sociated map ∆(a, b, c) ↪→ PSL2(R), unique up to conjugation. We will often suppress

the dependence on the triple from notation, writing for example ∆ = ∆(a, b, c).

16



2.1 Triangle groups

Figure 2.2: Tiling of H by the triangle (2, 3, 7) (from public domain).

The group ∆ is said to be cocompact if the quotient of the upper half-plane by ∆

is compact, else we say ∆ is noncocompact. We have ∆ noncocompact if and only if

at least one of a, b, c is equal to ∞.

Let ∆(2) denote the subgroup of ∆ generated by the set of squares {δ2 : δ ∈ ∆}.

Then ∆(2) ⊴ ∆ is a normal subgroup, in fact [21, (5.9)] the quotient ∆/∆(2) is

generated by the elements δs with s ∈ {a, b, c} such that either s = ∞ or s ∈ Z≥2 is

even. Hence

∆/∆(2) ≃


{0}, if at least two of a, b, c are odd integers;

Z/2Z, if exactly one of a, b, c is an odd integer;

(Z/2Z)2, if all of a, b, c are even integers or ∞.

(2.1.8)

Lemma 2.1.9. The group ∆(2) is generated by the set

{δ−1
s δ2t δs : s, t ∈ {a, b, c}} ∪ {δsδtδ−1

s δ−1
t : s, t ∈ {a, b, c}}. (2.1.10)

Proof. Follows from Takeuchi [69, Lemma 3, Proposition 5]: the generating set pre-
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2.2 Quaternions

sented there is smaller (depending on cases), whereas we collect these and symmetrize

to make a uniform statement.

Section 2.2

Quaternions

For s ∈ Z≥2 ∪ {∞}, let ζs := exp(2πi/s) and let λs := ζs + 1/ζs = 2 cos(2π/s), with

ζ∞ = 1 and λ∞ = 2 by convention. Define the tower of fields

F = F (a, b, c) := Q(λ2a, λ2b, λ2c)

E = E(a, b, c) := Q(λa, λb, λc, λ2aλ2bλ2c).

(2.2.1)

The extension F ⊇ E is abelian of exponent at most 2 (since λ22s = λs + 2) and has

degree at most 4. Let ZF ⊇ ZE be the corresponding rings of integers, and let dF |E

be the relative discriminant of F |E. The field F is the trace field of the image of

∆ in PSL2(R), and E the trace field for ∆(2), also called the invariant trace field (see

Maclachlan–Reid [51, section 5.5]).

Example 2.2.2. The fields E and F can be equal. For example,

F (2, 3, 7) = E(2, 3, 7) = Q(λ7).

As in section 2.1, we have a map ∆ ↪→ PSL2(R); the F -subalgebra B := F ⟨∆⟩ ≤

M2(R) generated by any lift of the image (well-defined, since −1 ∈ F ) is a quaternion

algebra, similarly O := ZF ⟨∆⟩ is a ZF -order in B [67, Propositions 2–3]. The reduced
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2.2 Quaternions

discriminant of O is a principal ideal of ZF generated by [21, Lemma 5.4]

β(a, b, c) := λ22a+λ
2
2b+λ

2
2c+λ2aλ2bλ2c−4 = λa+λb+λc+λ2aλ2bλ2c+2 ∈ ZE. (2.2.3)

The same construction applies to ∆(2), yielding a quaternion E-algebra A and a

ZE-order Λ. Let O1 := {γ ∈ O : nrd(γ) = 1} be the elements of reduced norm 1 in O,

and define Λ1 similarly. Then we have a commutative square of group homomorphisms

∆(2) � � //� _

��

Λ1/{±1}� _

��

∆ �
�

// O1/{±1}

(2.2.4)

In fact, the bottom map descends to the normalizer NA(Λ) of Λ in A, as follows.

Lemma 2.2.5. The composition of the maps

∆ ↪→ O1

{±1}
↪→ NB(O×)

F×

factors via the map

∆ ↪→ NA(Λ
×)

E×

δs 7→


δ2s + 1 = λ2sδs, if s ̸= 2;

(δ2c + 1)(δ2b + 1) = λ2bλ2cδa, if s = a = 2;

(2.2.6)

followed by the natural inclusion NA(Λ
×)/E× ↪→ NB(O×)/F×.

Proof. See Clark–Voight [21, Proposition 5.13]. (The description fails to be uniform

when a = 2 because λ4 = 0; since a ≤ b ≤ c we must have b > 2, else (a, b, c) is not
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2.3 Principal congruence subgroups

hyperbolic. The map is nevertheless uniquely determined, since δaδbδc = 1.)

Section 2.3

Principal congruence subgroups

We now define congruence subgroups. Let N ⊆ ZE be a nonzero ideal. Then reducing

elements modulo N, as in (2.2.4) we obtain a commutative diagram

1 // Γ(2)(N) //
� _

��

∆(2) //� _

��

(Λ/NΛ)1/{±1}� _

��

1 // Γ(N) // ∆
ϖN // (O/NO)1/{±1}

(2.3.1)

but now with kernels in the rows: in particular, we have a group homomorphism

ϖN : ∆ → (O/NO)1/{±1} (2.3.2)

with kernel

Γ(N) := kerϖN = {δ ∈ ∆ : δ ≡ ±1 (mod NO)} ⊴ ∆ (2.3.3)

called the principal congruence subgroup of level N.

We define congruence subgroups of ∆ to be those that contain a principal congru-

ence subgroup.

Remark 2.3.4. One could work more generally with ideals of ZF instead, arriving at

the same definition of congruence subgroups but with a different notion of level. In

light of what follows, especially the robust failure of ϖN to be surjective, we prefer to

work with levels in ZE.

Since ∆ normalizes ∆(2) and therefore Λ and NΛ, there is descent to the nor-

20



2.4 Triangular modular curves, first encounter

malizer as in Lemma 2.2.5. However, the precise description of Γ(N) depends on

the ramification behavior of the primes dividing N in the extension F |E and in the

algebras A and B (and this already introduces some subtleties when N is composite).

We pursue this in Theorem 3.3.1 and Theorem 5.2.8.

Section 2.4

Triangular modular curves, first encounter

A triangular modular curve is a quotient of the (completed) upper half-plane by a

congruence subgroup of a triangle group. For example

X(N) = X(a, b, c;N) := Γ(N)\H (2.4.1)

are called the principal triangular modular curves.

Example 2.4.2. We recall from Example 2.1.3 that ∆(2, 3,∞) ≃ PSL2(Z). We also

note that E(2, 3,∞) = Q, so ideals of Z = ZQ can be represented by positive integers

N . From this, we recover classical modular curves:

X(N) = X(2, 3,∞;NZ).

Looking forward to chapter 3 and following the analogy with modular curves, we

will define Borel–type congruence subgroups Γ0(a, b, c;N) and Γ1(a, b, c;N) and get

corresponding triangular modular curves X0(a, b, c;N) and X1(a, b, c;N).

Example 2.4.3. Let p7 be a prime of ZE(2,3,7) above 7. The curve X(2, 3, 7; p7) is the

Klein quartic, a genus 3 curve [21, section 10]. One of the most striking properties of
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2.4 Triangular modular curves, first encounter

this curve is that its automorphism group has size 168, the maximum for its genus.

For more on this fact and the arithmetic properties of the curve, see [37].
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Chapter 3

Triangular modular curves

We now study triangular modular curves that generalize classical modular curves.

The main results of the chapter are Proposition 3.2.6, where we define the relevant

matrix representation of ∆; and Theorem 3.3.1, describing its image building on work

of Clark–Voight [21]. Throughout, we retain our notation from the previous chapter.

This chapter is all joint work with John Voight published in [35].

Section 3.1

Galois case

Before proceeding, as a warmup we consider the curves X(a, b, c;N) defined in sec-

tion 2.4 corresponding to principal congruence subgroups. The fundamental domain

of the action of ∆(a, b, c) is two copies of the triangle with angles π/a, π/b, π/c glued

together, so X(a, b, c) ≃ P1. By construction, there is a cover

X(a, b, c;N) → X(a, b, c) ≃ P1.
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3.1 Galois case

It also follows from the construction that this is a Galois Belyi map.

Quite generally, for any Galois (Belyi) map with group G, the ramification indices

above each ramification point are equal. Without loss of generality, we may suppose

that a, b, c are also the orders of the ramification points. Thus the Riemann-Hurwitz

formula gives

2g(X)− 2 = −2(#G) +
∑

s=a,b,c

#G

s
(s− 1) (3.1.1)

which simplifies to

g(X) = 1− #G

2
χ(a, b, c). (3.1.2)

From this genus formula and Lemma 2.1.6, we can conclude that, for any fixed genus

g0 ≥ 0, there are finitely many hyperbolic G-Galois Belyi maps with genus g0.

Following the analogy with modular curves, we are of course interested in the

special case where

G = Γ(p)\∆ ≃ PXL2(Fp)

where Fp := ZE/p is the residue field and PXL2(Fp) denotes either PSL2(Fp) or

PGL2(Fp). (The major task in the next section is to precisely investigate this arith-

metically.) Plugging G = PXL2(Fq) into the above:

84(g0 − 1) ≥ #G = q(q + 1)(q − 1) ·


1/2, if G = PSL2(Fq) and q is odd;

1, otherwise.

Thus, there are no curves X(a, b, c; p) of genus at most 1. For genus 2, we can use the

inequality to see that q must be less than 6, so #G ≤ 60 and, if g(X(a, b, c; p)) = 2,
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3.2 Congruence subgroups: matrix case

then

− 1

χ(a, b, c)
≤ 30.

This inequality implies that a ≤ b ≤ c ≤ 7 and, by checking the genera of these

possibilities with (3.1.2), we conclude that there are no curves X(a, b, c; p) of genus

2.

In fact, the smallest genus for a hyperbolic triple with a, b, c ∈ Z≥2 is genus 3 for

(a, b, c) = (2, 3, 7), yielding the famed Klein quartic curve as in Example 2.4.3. More

generally, see Clark–Voight [21, Table 10.5] for examples up to genus 24.

Section 3.2

Congruence subgroups: matrix case

We return to (2.3.1), and identify matrix groups. The goal is to define congru-

ence subgroups of triangle groups that “come from matrices”, just like with classical

modular curves. We recall the setup from section 2.2. Let B be the F -subalgebra

F ⟨∆⟩ ≤ M2(R) and we consider O = ZF ⟨∆⟩ a ZF -order in B. Recalling (2.2.3), we

first suppose that β = discrdO is coprime to N, so all primes p | N are unramified in

B but more strongly we have (O/NO)1/{±1} ≃ SL2(ZF/NZF )/{±1}.

We recall that A = E⟨∆(2)⟩ is a quaternion algebra, containing the ZE-order

Λ = ZE⟨∆(2)⟩. For this order, we have Lemma 2.1.9: given a, b, c, we can compute

its ZE-module span in A and therefore a ZE-pseudobasis for Λ, hence its reduced

discriminant. Since ΛZF ⊆ O, we have β | discrd(Λ) [21, Corollary 5.17].

So we make the stronger assumption that N is coprime to discrd(Λ). Then from

25



3.2 Congruence subgroups: matrix case

(2.2.4) we get

∆(2) //� _

��

(Λ/NΛ)1/{±1}� _

��

∼ // SL2(ZE/N)/{±1}

∆
πN // (O/NO)1/{±1} ∼ // SL2(ZF/NZF )/{±1}

(3.2.1)

To descend the bottom map to the normalizer as in Lemma 2.2.5, we restrict our

scope taking N = p prime and work just a little bit more.

Let

ZE,(p) := {α ∈ E : ordp(α) ≥ 0} ⊆ E (3.2.2)

be the localization of ZE at the ideal p (all elements not in p become units).

Lemma 3.2.3. Suppose that p ∤ dF |E. Then for s = a, b, c, we can write

λs + 2 = υsθ
2
s ∈ E× (3.2.4)

with:

• υs ∈ Z×
E,(p), well-defined up to multiplication by an element of Z×2

E,(p), i.e., up to

the square of an element of Z×
E,(p), and

• θs ∈ E×, well-defined up to Z×
E,(p).

If p is coprime to 2abc, then we may take θs = 1 and υs = λs + 2.

Moreover, the prime p (necessarily unramified in F ) splits completely in F if and

only if the Kronecker symbols (υs | p) = 1 are trivial for all s = a, b, c.

Proof. First, a bit of generality: for α ∈ E× with even valuation at all primes p | N,
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3.2 Congruence subgroups: matrix case

by weak approximation in E we can write

α = υθ2 ∈ E× (3.2.5)

with υ, θ as in the statement of the lemma.

Now to apply this, we observe that F = E(λ2a, λ2b, λ2c) and recall that λ22s = λs+2.

By hypothesis, we have p ∤ dF |E; in particular the elements λs + 2 must have even

(nonnegative) valuation at p. Thus (3.2.5) applies, giving (3.2.4). The final statement

follows from the usual splitting criterion in quadratic fields.

We obtain the following result.

Proposition 3.2.6. Suppose that p ∤ discrd(Λ)dF |E. Then there is a commutative

diagram

∆(2) //� _

��

SL2(ZE/p)/{±1}

��

∆
πN // PGL2(ZE/p)

(3.2.7)

and the map πN : ∆ → PGL2(ZE/N) factors through ϖN.

We let Gp := πp(∆) ≤ PGL2(ZE/p) be the image of πp.

Proof. Combine (3.2.1) with Lemma 3.2.3.

Remark 3.2.8. A similar argument works when N is composite; however the right-

hand vertical map SL2(ZE/N)/{±1} → PGL2(ZE/N) may no longer be injective

when N is composite. This leads to certain ambiguities about the definition which

we will return to in chapter 5.
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3.3 Image and admissibility

Section 3.3

Image and admissibility

Theorem 3.3.1 (Clark–Voight). We have πp(G
(2)
p ) = PSL2(ZE/p) and

πp(Gp) = PXL2(ZE/p)

where PXL2 denotes PSL2 or PGL2 according as p splits in F ⊇ E or not.

Proof. We refer to Clark–Voight [21, Theorem A] for the case where p ∤ 2abc; but

examining the argument given [21, Remark 5.24, proof of Theorem 9.1] in light of the

above, we see that it extends when p ∤ discrd(Λ)βdF |E.

It can and does happen that two different triangular modular curves are isomor-

phic (as curves and as covers of P1). The issue is simply that in the homomorphism

πN from ∆(a, b, c) to a matrix group, the generators δs need not have order s in the

image (for s = a, b, c). In other words, the reduction homomorphism factors through

a triangle group with a smaller triple. This happens for example when s = ∞, as the

order of πN(δs) is always finite! To illustrate this phenomena, we present the following

example.

Example 3.3.2. Consider the triples (2, 3, c) with c = pk, where k ≥ 1 and p ≥ 5 is

prime. Then

Ek := E(2, 3, c) = F (2, 3, c) = Q(λ2c) = Q(ζ2c)
+ (3.3.3)

and β(2, 3, c) = λc − 1 ∈ Z×
Ek
. The prime p is totally ramified in F and pk is the

unique prime ideal above p, so Fpk ≃ Fp. Thus X(2, 3, pk; pk) ≃ X(2, 3, p; p1).

To avoid this redundancy, we make the following definition.
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3.3 Image and admissibility

Definition 3.3.4. Given a triple (a, b, c), a prime ideal p ⊆ ZE(a,b,c) is admissible for

(a, b, c) if

• p ∤ discrd(Λ)dF |E, and

• the order of πp(δs) is equal to s for all s = a, b, c.

When we consider inadmissible triples, it is useful to talk about the order of πp(δs),

and we will denote this order by s♯ for s ∈ {a, b, c}.

Proposition 3.3.5 ([21]). Let (a, b, c) be a hyperbolic triple with a, b, c ∈ Z∪{∞} and

let p be a prime ideal of E(a, b, c) with p the prime number below p. Let s ∈ {a, b, c},

then

s♯ =


s if s ̸= ∞ and p ∤ s;

s0 if s ̸= ∞ and s = s0p
k with s0 ̸= 1 and k ≥ 1;

p otherwise.

Proof. Follows from the proof of [21, Theorem 9.1] (not mentioned in the statement,

but proven as a claim in the course of the proof). When p ∤ s or s = s0p
k with ,

the order of the matrix is uniquely determined by its trace. If s = s0p
k with s0 ̸=

1 and k ≥ 1, then λ2s ≡ λ2s0 (mod p) and the order must be s0. Otherwise, the

element must be unipotent, so it must have order p.

Remark 3.3.6. When studying triangular modular curves, we can focus on admissible

triples without loss of generality. Let (a, b, c) be an inadmissible triple, let p ⊆

ZE(a,b,c) be a prime ideal, and assume that p ∤ discrd(Λ)dF |E. Then, there is a unique

admissible triple (a♯, b♯, c♯), and a prime ideal p′ ⊆ ZE(a♯,b♯,c♯) such that the cover

X(a, b, c; p) → P1 is isomorphic to X(a♯, b♯, c♯; p′) → P1.
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3.4 Hyperbolic triples reducing to non-hyperbolic triples

Section 3.4

Hyperbolic triples reducing to non-hyperbolic

triples

In considering admissible triples, we may lose the hypothesis that (a, b, c) is hyper-

bolic; however, this situation is easy to characterize. We note that in most cases,

these groups do not contain PSL2(Fq), so they are not considered in this manuscript.

Proposition 3.4.1. Suppose (a♯, b♯, c♯) is not hyperbolic. Then (a, b, c; p, q) is one

of the elements listed in the following table. In the table, p lies below p and q is the

residue field degree of p. In addition, we distinguish the Galois groups PSL2(Fq) and

PGL2(Fq) by writing 1 and −1 in the PXL column, respectively.
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3.4 Hyperbolic triples reducing to non-hyperbolic triples

(a, b, c) conditions p q PXL E(a♯, b♯, c♯)

(2ka , 2kb , 3 · 2kc),

(3 · 2kc ,∞,∞),

(2ka , 3 · 2kc ,∞)

1 ≤ ka < kb ≤ kc 2 2 1 Q

(3ka , 3kb , 3kc),

(3ka ,∞,∞),

(3ka , 3kb ,∞),

(∞,∞,∞)

1 ≤ ka ≤ kb < kc 3 3 1 Q

(2 · 3ka , 3kb , 3kc),

(2 · 3ka , 3kb ,∞),

(2 · 3ka ,∞,∞)

1 ≤ kb ≤ kc, kakbkc ̸= 1 3 3 1 Q

(2 · 3ka , 3kb , 4 · 3kc),

(2 · 3ka , 4 · 3kb ,∞)

1 ≤ kb, kakbkc ̸= 1 3 3 −1 Q

(2ka , 3 · 2kb , 5 · 2kc),

(3 · 2kb , 5 · 2kc ,∞)

1 ≤ ka, kakbkc ̸= 1 2 4 1 Q(
√
5)

(2 · 5ka , 3 · 5kb , 5kc),

(2 · 5ka , 3 · 5kb ,∞)

1 ≤ kc, kakbkc ̸= 1 5 5 1 Q(
√
5)

(3.4.2)

Furthermore, the curves X(a, b, c; p) with (a, b, c; p) as above all have genus 0.

Proof. We make a case by case study. The only triples (a, b, c) ∈ (Z≥0 ∪ {∞})3 that
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3.4 Hyperbolic triples reducing to non-hyperbolic triples

are not hyperbolic are

(2, 2, n) for n > 1, (2, 3, 3), (2, 3, 4), (2, 3, 5), (2, 3, 6), (2, 4, 4), or (3, 3, 3).

Assume first that (a♯, b♯, c♯) = (2, 2, c) for c > 1. The image of πp : ∆(2, 2, c) →

PGL2(Fq) must be dihedral because of the presentation of ∆(2, 2, c). The only dihe-

dral group that is isomorphic to PXL2(Fq) for any q is D6 ≃ PSL2(F2). Thus, we

only have the triple (a♯, b♯, c♯) = (2, 2, 3) and prime p2.

The group ∆(2, 3, 6) is solvable since it fits in the exact sequence:

1 → Z2 → ∆(2, 3, 6) → Z/6Z → 1.

The only solvable groups of the form PXL2(Fq) are S4 ≃ PGL2(F3) and A4 ≃

PSL2(F3). The triple (2, 3, 6) is inadmissible for q = 2 or q = 3, so (2, 3, 6) does not

arise from any prime ideal p. With the same analysis, we can rule out (2, 4, 4). We

also have that the group ∆(3, 3, 3) is solvable. Hence, the image of πp : ∆(3, 3, 3) →

PXL2(Fq) must be solvable. The only solvable groups of this form are A4 ≃ PSL2(F3)

and S4 ≃ PGL2(F3). Thus, the only option is that p is a prime above 3 with residue

field F3.

The last triples to consider are (2, 3, 3), (2, 3, 4) and (2, 3, 5). These triples are all

exceptional. The only projective linear groups that can arise from exceptional triples

[21, Remark 8.4] are the following:

PSL2(F3),PGL2(F3),PGL2(F4),PSL2(F5).
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3.4 Hyperbolic triples reducing to non-hyperbolic triples

We now use this fact to finish the analysis. When (a♯, b♯, c♯) = (2, 3, 3), the admissible

prime ideals p have residue field degree 3, 4, and 5. The field E(2, 3, 3) is the rational

field, so ZE/p2 ≃ F2. In addition, the ideal 2ZE is totally ramified in any field

E(2 · 2ka , 3 · 2kb , 3 · 2kc), so q ̸= 4. The only options then are q = 3 and q = 5. A

quick Magma [17] calculation shows that elements with these orders cannot generate

PSL2(F5).

Similarly, when (a♯, b♯, c♯) = (2, 3, 4), the only possibilities for q with image con-

taining PSL2(Fq) and admissible for p are q = 3 or q = 5. However, the field E(2, 3, 4)

is the rational field and 5 is inert in F , so we would have G5ZE
≃ PGL2(F5), which

is not on the list of possible groups. The same happens for (a♯, b♯, c♯) = (2, 3, 5); the

options of q for an admissible prime p are q = 2, 3, 4, 5. The ideal 2ZE is inert in

E(2, 3, 5), an extension of Q of degree 2, thus q = 2 is not possible. The ideal 3ZE is

also inert in E(2, 3, 5), so an isomorphism with PXL2(F3) is not possible. The only

options for q are q = 4 and q = 5.

For all of the possible triples (a♯, b♯, c♯) and primes p described above, we certify

that such map is possible by exhibiting passports for each curve. We then describe

the options for (a, b, c) using Proposition 3.3.5. Finally, we use (3.1.2) to compute

the genus of each of these curves, finding that they all have genus 0.
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Section 3.5

Borel-type subgroups

Now that we found a way to going back to matrices, we are ready to define congruence

subgroups that mirror the constructions from classical modular curves. Let


a b

0 d

 : a, b, d ∈ ZE/p and ad ∈ (ZE/p)
×

 ≤ GL2(ZE/p) (3.5.1)

be the upper-triangular matrices in GL2(ZE/p), and let H0,p be its image in the

projection to PGL2(ZE/p). Similarly, let


1 b

0 1

 : b ∈ ZE/p

 ≤ GL2(ZE/p) (3.5.2)

be the upper unipotent subgroup and H1,p again its image in PGL2(ZE/p).

We then define the subgroups

Γ0(a, b, c; p) := φ−1
p (H0,p),

Γ1(a, b, c; p) := φ−1
p (H1,p).

(3.5.3)

and the corresponding quotients

X0(a, b, c; p) := Γ0(a, b, c; p)\H = H0,p\X ′(a, b, c; p)

X1(a, b, c; p) := Γ1(a, b, c; p)\H = H1,p\X(a, b, c; p).

(3.5.4)
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3.5 Borel-type subgroups

Then we have natural quotient maps

X(a, b, c; p) → X1(a, b, c; p) → X0(a, b, c; p) → X(a, b, c; 1) ≃ P1. (3.5.5)

These curves will be our main object of study in the following chapter.
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Chapter 4

Triangular modular curves of

prime level

In this chapter, we exhibit a formula for the genus of the Borel-type triangular modu-

lar curves X0(a, b, c; p) for p prime (see Theorem 4.2.4). Using this formula, we show

that there are only finitely many such curves with bounded genus in Corollary 4.4.6,

which is the main result of the chapter. We then present an algorithm that enumer-

ates all such curves of bounded genus (see Algorithm 4.5.2). We then build up with

these ideas to provide similar results for curves X1(a, b, c; p). This chapter is from

joint work with John Voight published in [35].

Section 4.1

Setup

Let (a, b, c) be a hyperbolic triple and p be an admissible prime of E = E(a, b, c) with

residue field Fp. Let q := #Fp, so Fp ≃ Fq. Because E is Galois over Q, all primes p

have the same ramification and splitting type; it follows that the genus of X0(a, b, c; p)
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4.1 Setup

only depends on the prime number p ∈ Z below p (and the inertial degree of p over

p), i.e. only on q.

Let G := Gp be as in Theorem 3.3.1. Then the group H0 = H0,p consists of the

image in G of the upper-triangular matrices of SL2(Fq) or GL2(Fq), depending on G.

By construction, the curves X0(a, b, c; p) and X(a, b, c; p) fit in the following diagram.

X(a, b, c; p)
H0

((

G

��

X0(a, b, c; p)

vv
P1

We first compute the index [G : H0], which corresponds to the degree of the cover

X0(a, b, c; p) → P1. If G = PGL2(Fq), up to multiplication by a scalar matrix, it is

possible to choose representatives of elements of H0 that have 1 on the first entry of

the matrix. Thus, #H0 = q(q − 1) and [G : H0] = q + 1. When q is even, we have

an isomorphism PSL2(Fq) ≃ PGL2(Fq), so the index [G : H0] is the same as above.

Finally, if G = PSL2(Fq) with q odd, then representatives can be chosen to have 1 on

the first entry of the matrix as above. Also, the upper triangular matrices are defined

up to multiplication by −1. Hence #H0 =
1
2
q(q − 1) and [G : H0] = q + 1.

Via the projection of the first column of the matrix to P1(Fq), the set of cosets

G/H0 is naturally in bijection with P1(Fq). With this bijection, the action of πp(∆)

on G/H0 becomes simply matrix multiplication. The ramification of the cover of P1

coming from X0(a, b, c; p) then depends on the cycle decomposition of the correspond-

ing elements (in G) as an element of Sym(P1(Fq)) ≃ Sq+1.
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4.2 Cycle structure and genus formula

Section 4.2

Cycle structure and genus formula

The following lemma describes the cycle structure defined in the previous section.

The main feature of this Lemma is that it only uses the order of the elements. Recall

we write PXL2 for either PSL2 or PGL2.

Lemma 4.2.1. Let G = PXL2(Fq) with q = pr for a prime number p. Let σs ∈ G

have order s ≥ 2, and if s = 2 suppose p = 2. Then the action of σs on P1(Fq) has:

(i) two fixed points and (q − 1)/s orbits of length s if s | (q − 1);

(ii) one fixed point and q/p orbits of length p if s = p (this is the case when s | q);

and

(iii) (no fixed points and) (q + 1)/s orbits of length s if s | (q + 1).

Proof. We note that each class in G is represented by matrices that are diagonalizable

over Fq, diagonalizable only over Fq2 , or not diagonalizable. We prove the Lemma

by studying in detail each case. Let σs be an element of GL2(Fq) whose projection

to G is σs. If σs is diagonalizable, then we say that σs is split semisimple, and σs

is conjugate to say the diagonal matrix with diagonal [u, v]. We must have u ̸= v

because otherwise σs would be the identity in G, contradicting that s ≥ 2. The order

of σs is s, so s is the order of uv−1 in F×
q . To find the orbits of the action of σs on

P1(Fq), we use that

u 0

0 v

(1:

0

)
=

(
1

:

0

)
,

u 0

0 v

(x:

1

)
=

(
uv−1x

:

1

)
,
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4.2 Cycle structure and genus formula

for any x ∈ Fq. Hence, the action of σs has two fixed points:

(
1

:

0

)
and

(
0

:

1

)
, and

(q − 1)/s orbits with s elements.

The element σs is unipotent if and only if it is conjugate to an upper triangular

matrix with diagonal values equal to 1 and upper-right entry u ∈ F×
q . This is the

case when the characteristic polynomial of σs has two equal roots and σs is not

diagonalizable over F2
q. This happens if and only if s = p. In this case, we have

1 u

0 1

(1:

0

)
=

(
1

:

0

)
,

1 u

0 1

(x:

1

)
=

(
x+ u

:

1

)
,

where x ∈ Fq. There is only one fixed point and there are q/p orbits of size p.

If the characteristic polynomial of σs does not split in Fq, we call σs non-split

semisimple. The action of σs has no fixed points because this would imply that σs

has an eigenvector. The splitting field of the characteristic polynomial of σs is Fq2 .

Let α1, α2 ∈ Fq2 \ Fq be the roots of this polynomial. Then σs is conjugate to the

diagonal matrix [α1, α2] with σs = T−1[α1, α2]T for some invertible matrix T . For all

m ∈ N such that σm
s fixes (x : y)t ∈ P1(Fq), we have that

αm
1 0

0 αm
2

(T(x:

y

))
=

(
T

(
x

:

y

))
.

From the analysis of the split semisimple case, we conclude that every orbit has length

s. Thus, the action of σs on P
1(Fq) has (q + 1)/s orbits of length s.

The previous lemma does not consider the case when s = 2 and q is odd. The

ambiguity arises since if s = 2 then s | (q − 1) and s | (q + 1), so σ2 can be either
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4.2 Cycle structure and genus formula

split or non-split (semisimple).

Example 4.2.2. For (a, b, c) = (2, 3, 8) and G = PGL2(F7), we have σ2 split and it

belongs to the conjugacy class of 6 0

0 1

 .

On the other hand, for (2, 6, 6) and G = PGL2(F7), we have σ2 non-split, belonging

to the conjugacy class of 0 6

1 0

 .

The following lemma solves this problem when G = PSL2(Fq).

Lemma 4.2.3. Let G = PSL2(Fq) with q odd, and let σ2 ∈ G be an element of order

2. Then the action of σ2 on P1(Fq) has:

(i) two fixed points and (q − 1)/2 orbits of size 2 if −1 is a square modulo q; and

(ii) (no fixed points and) (q + 1)/2 orbits of size 2, otherwise.

Proof. Let σ2 be a matrix of order 2 in PSL2(Fq). Pick a lift σ2 ∈ SL2(Fq) of σ2.

Because σ4
2 is the identity, its characteristic polynomial must be a quadratic polyno-

mial dividing x4 − 1. In addition, the constant of this polynomial must be 1 since

this is the determinant of σ2. The only possibility for such a polynomial is x2 + 1. If

−1 ∈ F×2
q , then this characteristic polynomial splits with distinct roots, so we are in

the split semisimple case of Lemma 4.2.1. Otherwise, −1 is not a square and we are

in the non-split semisimple case.

Now we are ready to give a formula for the genus g of X0(a, b, c; p). For x ∈ R,

we write ⌊x⌉ for the rounding down of x, so ⌊3/2⌉ = 1.
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4.2 Cycle structure and genus formula

Theorem 4.2.4. Let (a, b, c) be a hyperbolic admissible triple and p be a prime of E

above a rational prime p. Then the genus of X0(a, b, c; p) is given by

g(X0(a, b, c; p)) = −q + 1

2

∑
s∈{a,b,c}

⌊q
s

⌉
(s− 1) + ϵ(a, b, c; p), (4.2.5)

where q is as before and ϵ(a, b, c; p) ∈ {0, 1/2} is uniquely determined by the genus

g(X0(a, b, c; p)) being an integer. Moreover, we have ϵ(a, b, c; p) = 0 unless a = 2 and

q is odd.

In the latter case (a = 2 and q odd), Lemma 4.2.3 implies that when G =

PSL2(Fq), we have ϵ(a, b, c; p) = 0 if and only if q ≡ 1 (mod 4) (case (i)).

Proof. Consider elements σa, σb, σc ∈ PXL2(Fq) of orders a, b, and c, respectively,

such that σaσbσc = 1. We recall that the map X0(a, b, c; p) → X(1) has degree q + 1

since [G : H0] = q + 1. The Riemann–Hurwitz formula implies

2g − 2 = −2(q + 1) + ϵa + ϵb + ϵc, (4.2.6)

where ϵs is the ramification index at each of the branch points corresponding to s ∈

{a, b, c}. We can compute ϵs from Lemma 4.2.1 and Lemma 4.2.3, with ϵs = ks(s−1),

where

ks =


(q − 1)/s, if s | (q − 1);

q/s, if s | q;

(q + 1)/s if s | (q + 1);

(4.2.7)

if s ̸= 2 or (s = a = 2 and q is even); whereas if s = a = 2 and q is odd, then either

k2 = (q + 1)/2 or k2 = (q − 1)/2 is determined by the fact that g ∈ Z, since they

41



4.3 Algorithm

differ by 1.

Remark 4.2.8. Instead of using parity, in the PGL2(Fq) and q odd case, we can always

explicitly compute elements σ2, σb, σc ∈ G, of orders 2, b, and c respectively, such

that σ2σbσc = 1. We can then decide if σ2 is split or non-split and use Lemma 4.2.1

to compute the ramification.

Section 4.3

Algorithm

We present an implementation of Theorem 4.2.4.

Algorithm 4.3.1 (Compute the genus of X0(a, b, c; p)).

Input: a hyperbolic triple (a, b, c) ∈ (Z∪{∞})3 and a nonzero prime ideal p ⊆ ZE(a,b,c).

Output: the genus of X0(a, b, c; p) and the Galois group Gp of the cover X(a, b, c; p) →

P1.

1. Compute the residue field of p and set q := #Fp.

2. Compute the residue field ZF/pF , where pF is a prime of F (a, b, c) above p. If

Fq ≃ ZF/pF , then G = PSL2(Fq). Otherwise set G = PGL2(Fq).

3. Compute g using Theorem 4.2.4.

Proof of correctness. Correctness follows from the formula in Theorem 4.2.4. Steps

1 and 2 can be performed by constructing the algebraic number field; it can also be

done purely in terms of the prime number p below p.
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4.4 Bounds from fixed genus

Section 4.4

Bounds from fixed genus

Our goal remains to show that, for fixed genus g0, there are finitely many admissible

curves X0(a, b, c; p) of genus g ≤ g0. We first characterize the hyperbolic triples

(a, b, c) such that the curve X(a, b, c; p) has Galois group PXL2(Fq), for a given q.

In the prime case, the notion of admissible ideal can be turned around, as follows.

Definition 4.4.1. Let q := pr be a power of a prime number p. A hyperbolic triple

(a, b, c) is q-admissible if s divides at least one integer in the set {q − 1, p, q + 1} for

all s ∈ {a, b, c}, not including ∞.

Lemma 4.4.2. For any triangular modular curve X0(a, b, c; p) with q := Nm p and p

admissible for (a, b, c), the triple (a, b, c) is q-admissible.

Proof. As shown in the proof of Lemma 4.2.1, the order of every element in PXL2(Fq)

needs to divide one of {q − 1, p, q + 1}.

Proposition 4.4.3. Let g be the genus of the triangular modular curve X0(a, b, c; p)

and set q := ZE/p. Then,

q ≤ 84(g + 1) + 1.

Proof. Recall that s♯ denotes the order of πp(δs). The cases where (a♯, b♯, c♯) is not

hyperbolic are handled in Proposition 3.4.1: we get g = 0, and the inequality holds.

So we may suppose without loss of generality that s♯ = s for s = {a, b, c}, and still

that (a, b, c) is hyperbolic.

We study the Belyi map X0(a, b, c; p) → P1. Let ϵa, ϵb, ϵc be as before. Using
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4.4 Bounds from fixed genus

Lemma 4.2.1, we have that for s ∈ {a, b, c},

(q − 1)− q − 1

s
=

(s− 1)(q − 1)

s
≤ ϵs ≤

(s− 1)(q + 1)

s
= (q + 1)− q + 1

s
. (4.4.4)

Because of these bounds and (4.2.6),

g(X0(a, b, c; p)) ≥ −(q + 1) +
(a− 1)(q − 1)

2a
+

(b− 1)(q − 1)

2b
+

(c− 1)(q − 1)

2c
+ 1

= (q − 1)

(
−1 +

3

2
− 1

2a
− 1

2b
− 1

2c

)
− 1

=
q − 1

2
|χ(a, b, c)| − 1,

(4.4.5)

where χ(a, b, c) is as in (2.1.5). The result then follows from the previous inequality

and the upper bound for χ(a, b, c) given in Lemma 2.1.6.

Corollary 4.4.6. For a fixed genus g0 ∈ Z≥0, there are only finitely many hyperbolic

triples (a, b, c) and admissible primes p such that the curves X0(a, b, c; p) have genus

g ≤ g0.

Proof. By Proposition 4.4.3, we obtain an upper bound on the rational prime p given

by q ≤ 84(g0 + 1) + 1. Also, for (a, b, c) to be q-admissible, necessarily s ≤ q + 1 for

all s ∈ {a, b, c}. This leaves only finitely many possibilities.

Remark 4.4.7. To make computations more efficient, we can consider a bound on q

that depends on χ(a, b, c). For the genus of X0(a, b, c; p) to be less than or equal to

g0, it is necessary that

q ≤ 2(g0 + 1)

|χ(a, b, c)|
+ 1. (4.4.8)
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4.5 Enumerating curves of low genus and prime level

This inequality also shows that

0 < |χ(a, b, c)| ≤ 2(g0 + 1)

q − 1
. (4.4.9)

Therefore, we can bound a, b, and c whenever g0 and q are fixed.

Section 4.5

Enumerating curves of low genus and prime level

Now we present the main algorithms that use the theory developed in the previous

sections. We will effectively enumerate the curves X0(a, b, c; p) of bounded genus.

Note we already know that the number of curves is finite from Corollary 4.4.6. As

explained in section 3.3, if p is admissible for (a, b, c), then G = Gp is given by

PXL2(Fq). The first condition (coprimality) in admissibility can be expensive to

check, so we first check the easier necessary (but not sufficient) condition that p ∤

β(a, b, c).

Algorithm 4.5.1 (Relatively prime to β).

Input: a hyperbolic triple (a, b, c) and a prime number p.

Output: returns true if there exists a prime p ⊆ ZE(a,b,c) above p such that p ∤ β(a, b, c)

and false otherwise.

1. If p ∤ 2abc, then return true.

2. Find Fp = Fq, where p is any prime of E above p.

3. Set m := lcm(a, b, c). Construct Fq(ζ2m). Set z := ζ2m.
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4.5 Enumerating curves of low genus and prime level

4. For every i ∈ (Z/2mZ)×, and set l2s := zim/s + 1/zim/s for s ∈ {a, b, c}. Com-

pute

βi := l22a + l22b + l22c + l2al2bl2c − 4.

If βi ̸= 0 and whenever p | s we have s = p, then return true. Otherwise,

return false.

Proof of correctness. Let p be a prime of ZE(a,b,c) above p. If p ∤ 2abc then p ∤ β(a, b, c)

[21, Lemma 5.5]. When p | abc, checking that p does not divide β(a, b, c) is more

involved. We do this in steps 2 to 4 by computing β in the residue field of p. This

computation is independent of the prime p chosen above p because E is Galois over

Q.

Now we are ready to present the main algorithm that ties the results of this chapter

into an explicit enumeration.

Algorithm 4.5.2 (Enumerate curves X0(a, b, c; p) of bounded genus).

Input: an integer g0 ∈ Z≥0.

Output: a list lowGenus of all hyperbolic triples (a, b, c) ∈ Z3
≥2 and norms of prime

ideals p of E(a, b, c) that are admissible and such that the genus of X0(a, b, c; p) is at

most g0.

1. Loop over the list of possible powers q = pr, where p is a prime number and

q ≤ 84(g0 + 1) + 1.

2. For each q from step 1, find all q-admissible hyperbolic triples (a, b, c) (as in

Definition 4.4.1).
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4.6 Triangular modular curves X1(a, b, c; p)

3. For each q-admissible triple (a, b, c) from step 2, check if χ(a, b, c) satisfies

(4.4.9) and if p does not divide β(a, b, c) using Algorithm 4.5.1. If yes, compute

the candidate genus g of X0(a, b, c; p) using Algorithm 4.3.1.

4. If g ≤ g0, check that p ∤ discrd(Λ)dF |E. If yes, add (a, b, c; q) to the list

lowGenus.

Proof of correctness. For step 1, see Proposition 4.4.3. Every hyperbolic q-admissible

triple gives rise to one such curve. The correctness of the rest of the algorithm follows

from the work done in the previous sections of this chapter.

We list the CPU time (in seconds) for our implementation to compute the list of

curves X0(a, b, c; p) of genus up to bounds 0, 1, and 2 on a standard laptop:

Genus bound 0 1 2

Time (s) 1.7 9.7 1110.3

Section 4.6

Triangular modular curves X1(a, b, c; p)

In this section, we conclude the chapter by translating our methods to genus compu-

tation of curves X1(a, b, c; p), completing the proof of our main result.

We recall thatX1(a, b, c; p) is defined in (3.5.4) as the quotient ofH by Γ1(a, b, c; p).

Corollary 4.6.1. For any integer g0 ≥ 0, there are finitely many triangular modular

curves X1(a, b, c; p) with p admissible.

Proof. For every triple (a, b, c) ∈ (Z≥2 ∪ {∞})3 and prime ideal p of E(a, b, c), there
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4.6 Triangular modular curves X1(a, b, c; p)

is a cover X1(a, b, c; p) → X0(a, b, c; p). All curves X1(a, b, c; p) of genus bounded

above by g0 cover curves X0(a, b, c; p) of genus bounded above by g0. Because of

Corollary 4.4.6, there are finitely many admissible triples (a, b, c) and prime ideals p

that give rise to curves X0(a, b, c; p) of genus bounded above by g0.

We now focus on explicitly enumerating all curves of bounded genus. The goal

first is to prove group-theoretic results that describe the degree and ramification of

the cover X1(p) → X(1). We describe the structure of the quotient PXL2(Fq) modulo

H1,p and then describe the action of πp(δs) on this quotient. The main difference with

section 4.1 is that the quotient G/H0,p does not depend on G being isomorphic to

PSL2(Fq) or PGL2(Fq), whereas the structure of G/H1,p depends on the choice of G

as we describe now. Let H1 := H1,p.

Lemma 4.6.2. Let G = PXL2(Fq), where Fq := ZE/p. The quotient G/H1 can be

described as follows.

(i) If G = PSL2(Fq), then G/H1 ≃ (Fq × Fq \ {(0, 0)})/⟨±1⟩: explicitly, the class

of (x, z) ∈ Fq × Fq maps to the coset of

x y

z w

, where y, w ∈ Fq satisfy

xw − yz = 1.

(ii) If G = PGL2(Fq), then G/H1 ≃ (Fq × Fq \ {(0, 0)})/⟨±1⟩ × F×
q /F×2

q : explicitly,

for µ ∈ F×
q \ F×2

q the class of ((x, y), u) ∈ (Fq × Fq \ {(0, 0)})× F×
q maps to the

coset of

x y

z w

, where z, w ∈ Fq satisfy xw − yz = 1 if u is a square and

xw − yz = µ otherwise.

Proof. Let G = PSL2(Fq) with q odd. Because #H1 = #Fq, we have that [G :

H1] = (q2−1)/2. The coset representatives of G/H1 can be parameterized by (x, z) ∈
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(Fq × Fq)/⟨±1⟩. Indeed, two elements in PSL2(Fq) are in the same coset of G/H1 if

and only if there is α ∈ Fq such that

±

x y

z w


1 α

0 1

 = ±

x xα+ y

z zα+ w

 =

x′ y′

z′ w′

 .

This is the case if and only if (x, z) = ±(x′, z′). Thus, the map defined by the

parametrization (Fq × Fq) \ {(0, 0)}/⟨±1⟩ → G/H1 is a well-defined, injective homo-

morphism. By a cardinality comparison it follows that it is an isomorphism.

Now we let G = PGL2(Fq), so [G : H1] = q2−1. We claim that the quotient G/H1

is isomorphic to (Fq × Fq \ {(0, 0)})/{±1} × F×
q /F×2

q . To present this isomorphism,

we fix a non-square µ ∈ F×
q \ F×2

q . For any ±(x, z) ∈ (Fq × Fq \ {(0, 0)})/⟨±1⟩, and

any u ∈ {1, µ} ≃ F×
q /F×2

q , we choose values of y, w ∈ Fq such that xw − yz = u and

map ±(x, z) to the class of the matrix

x y

z w

 in PGL2(Fq). Given two different

choices y, w ∈ Fq and y
′, w′ ∈ Fq, if x ̸= 0, then

±

x y

z w

 =

x y′

z w′


1 x−1(y − y′)

0 1

 .

If x = 0, then z ̸= 0 and 0 ̸= u = yz = y′z. Thus, y = y′. We also have

±

0 y

z w

 =

0 y

z w′


1 z−1(w − w′)

0 1

 .

Thus, the map (Fq × Fq \ {(0, 0)})/{±1} × F×
q /F×2

q → G/H1 is a well defined homo-

morphism. In addition, multiplication by elements in H1 does not change the square
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class of the determinant or the first column of the matrix, so the homomorphism de-

scribed above is injective. Since the cardinalities of the domain and range are equal,

we conclude that this is an isomorphism.

We proceed to describe the ramification of the cover X1(a, b, c; p) → P1. This

result is similar to Lemma 4.2.1. The main difference is that in certain cases there

are more fixed points than strictly necessary.

Proposition 4.6.3. Let σs ∈ G = PXL2(Fq) and assume that the order of σs is s.

The structure of the action of σs on G/H1 is as follows:

(i) if σs is semisimple, then there are (no fixed points and) [G : H1]/s orbits of

length s,

(ii) if σs is unipotent, then:

(a) if G = PSL2(Fq) and q is odd, there are (q − 1)/2 fixed points and (q2 −

q)/(2p) orbits of length p,

(b) otherwise, there are q − 1 fixed points and (q2 − q)/p orbits of length p.

Proof. We use the description of the quotient G/H1 given in Lemma 4.6.2. Let σs be

any element of GL2(Fq) that maps to σs in the quotient to G.

If σs is split semisimple, then it is conjugate over Fq to a diagonal matrix with

entries u, v. Because the order of σs is s, then s is the order of uv
−1. We pick a class in

the quotient G/H1 represented by a matrixM . If the class ofM is fixed by the action

of σs, then the first column ofM is, up to multiplication by±1, fixed by multiplication

by the diagonal matrix. This implies that (u, v) = ±(1, 1), contradicting that s ≥ 2.

Thus, there are no fixed points of the action of σs on G/H1. A similar argument
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shows that orbits of elements that are not fixed cannot have length less than s. Thus,

every element belongs to an orbit of length s.

If σs is non-split semisimple, then σs is split in a quadratic extension of Fq. We

assume that σs = T−1[α1, α2]T in this extension. If σr
s fixes an element for r ≥ 1,

then we have

±

αr
1 0

0 αr
2

T

x y

z w

 = T

x y′

z w′

 .

Multiplication by T does not change the equality in G/H1. Thus, we are back to the

split semisimple case and the orbits of the action of σs all have size s.

If σs is unipotent, then σs can be chosen (by multiplying by scalar matrices) to

be conjugate to an upper diagonal matrix with ones in the diagonal. Then,

1 u

0 1


x y

z w

 =

x+ uz y + uw

z w

 ,

so the class of this matrix in G/H1 is fixed by multiplication by σs if and only if

uz = 0. Since s ≥ 2, then z must be 0. We note that if z ̸= 0, then the orbit of

the element has length p. In G = PSL2(Fq) there are (q − 1)/2 representatives for

which z = 0, i.e. fixed points. Similarly, if G = PGL2(Fq), then there are q − 1 fixed

points.

Corollary 4.6.4. Let (a, b, c) ∈ Z3
≥2 be a q-admissible hyperbolic triple. Let p be a

prime ideal of E(a, b, c) above a rational prime p. Then the genus of X1(a, b, c; p) is

given by

g(X1(a, b, c; p)) = −[G : H1] + 1 +
1

2

∑
s∈{a,b,c}

ks(s− 1),
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where

ks =



(q2 − q)/(2p), if s = p and G = PSL2(Fq);

(q2 − q)/p, if s = p and G = PGL2(Fq);

(q2 − 1)/s, if s ̸= p and G = PGL2(Fq); and

(q2 − 1)/(2s), if s ̸= p and q is odd and G = PSL2(Fq).

Proof. This formula is given by using the Riemann-Hurwitz formula on X1(p) → P1

and Proposition 4.6.3.

Now we are ready to present an algorithm that enumerates all curves X1(a, b, c; p).

Algorithm 4.6.5 (Enumerate curves X1(a, b, c; p) of bounded genus).

Input: an integer g0 ∈ Z≥0.

Output: a list lowGenusX1 of all hyperbolic triples (a, b, c) and admissible ideals p

such that the genus of X1(a, b, c; p) is g ≤ g0.

1. Loop over all hyperbolic triples (a, b, c) and prime ideals p such that X0(a, b, c; p)

has genus bounded above by g0. This list can be obtained from Algorithm 4.5.2.

2. For each triple (a, b, c) and ideal p listed in the previous step, compute the genus

g of X1(a, b, c; p) with Corollary 4.6.4. If g ≤ g0, then add (a, b, c; p) to the list

lowGenusX1.

Proof of correctness. We show that the list is complete. For all triples (a, b, c) and

prime ideals p there are maps X1(a, b, c; p) → X0(a, b, c; p). Thus, the only curves

X1(a, b, c; p) that can have genus g ≤ g0 must be covers of curves X0(a, b, c; p) of

genus bounded above by g0.
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Chapter 5

Triangular modular curves of

composite level

This chapter aims to generalize the results from chapters 3 and 4 about Borel-type

triangular modular curves of prime level to the same curves with composite level.

Our building blocks will be the curves with prime level. We use that for any p | N,

we have covers Xi(a, b, c;N) → Xi(a, b, c; p) for i ∈ 0, 1. When the level N is the

product of distinct primes, the results follows by the Sun Zi Theorem (CRT). This

chapter’s challenge is dealing with level N = pe, where e > 1 and p is a prime ideal.

In particular, most of the work at the beginning is done to characterize admissible

triples in Corollary 5.2.7. Then, we present Algorithm 5.4.6, a generalization of

Algorithm 4.5.2 to composite level. We proceed to extending the results to curves X1

in section 5.5, and we prove the main theorem of this part of the thesis, Theorem 5.6.1.

At the end of this chapter, we explore future work on computing the ramification of

the covers X0 → P1 by using embedding numbers and strong approximation instead

of a direct computation. This chapter contains unpublished joint work with John
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5.1 Extra setup

Voight.

Section 5.1

Extra setup

In this section, we give some basic setup and notation, extending the work done for

the prime level case in section 2.3 and section 3.2. We recall the setup from that

section. Let B be the F -subalgebra F ⟨∆⟩ ≤ M2(R) and we consider O = ZF ⟨∆⟩ a

ZF -order in B. Recalling (2.2.3), we first suppose that β = discrdO is coprime to N,

so all primes p | N are unramified in B but more strongly we have (O/NO)1/{±1} ≃

SL2(ZF/NZF )/{±1}. From (2.3.1) we obtain

ϖN : ∆ → SL2(ZF/NZF )/{±1}. (5.1.1)

We recall Proposition 3.2.6, which states that if N is prime and coprime to

discrd(Λ)dF |E, then there is a commutative diagram

∆(2) //� _

��

SL2(ZE/N)/{±1}

��

∆
πN // PGL2(ZE/N)

(5.1.2)

and the map πN : ∆ → PGL2(ZE/N) factors through ϖN. As explained in Re-

mark 3.2.8, the issue with composite level is that the right-hand vertical map may no

longer be injective. The main effort of this section is to compute the kernel of this

map.

Recall that GN := πN(∆) is the image of (5.1.1). We need a bit more notation to
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show the corresponding statement for A = E⟨∆⟩ (under an additional hypothesis).

Let

ZE,(N) := {α ∈ E : ordp(α) ≥ 0 for all p | N} ⊆ E (5.1.3)

be the localization of ZE at the ideal N (all elements coprime to N become units).

We recall Lemma 3.2.3. Suppose that N is coprime to βdF |E. Then for s = a, b, c,

we can write

λs + 2 = υsθ
2
s ∈ E× (5.1.4)

with:

• υs ∈ Z×
E,(N), well-defined up to multiplication by an element of Z×2

E,(N), and

• θs ∈ E×, well-defined up to Z×
E,(N).

If N is coprime to 2abc, then we may take θs = 1 and υs = λs + 2.

Moreover, a prime p | N (necessarily unramified in F ) splits completely in F if

and only if the Kronecker symbols (υs | p) = 1 are trivial for all s = a, b, c.

Proposition 5.1.5. If p ∤ βdF |E, then A is split at the prime p.

Proof. For simplicity, we suppose that a > 2; when a = 2, the proof can be modified

as in Lemma 2.2.5. Consider the completed order Λp := Λ⊗ZE
ZE,p. We will find an

order Λ′
p ⊇ Λp with trivial reduced discriminant; this implies the statement.

Consider the ZE,p-submodule Λ′
p of Ap generated by 1 and δ′s := (δ2s + 1)/θs for

s = a, b, c with θs as in (5.1.4). A direct calculation similar to that for Λ shows

that Λ′
p is a ZE,p-order. Recalling the calculation of the reduced discriminant [21,

Lemma 5.4], we have

trd([δa, δb]δc) = β;
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therefore discrd(Λ′
p) is generated by

trd([δ′a, δ
′
b]δ

′
c) =

λ2aλ2bλ2c
θaθbθc

β.

But (λ2s/θs)
2 = υs ∈ Z×

E,p, so (λ2aλ2bλ2c)/(θaθbθc) ∈ Z×
E,p as well. We are given p ∤ β,

so ordp(Λ
′
p) = 0 and A is split at p.

Remark 5.1.6. The coprimality hypothesis in Proposition 5.1.5 is natural. If p | β,

then for any prime P of ZF over p, the local order OP := O⊗ZF
ZF,P is not isomorphic

to M2(ZF,p) (else it would have trivial reduced discriminant). Similarly, if p | dF |E,

then p | λ2aλ2bλ2c (and λ2bλ2c if a = 2) and so p may divide the reduced discriminant

of Λ [21, Corollary 5.17].

From Proposition 5.1.5, the restriction of πN to ∆(2) gives a map

πN : ∆
(2) → SL2(ZE/N)/{±1}. (5.1.7)

Let G
(2)
N := πN(∆

(2)) be the image and Γ(2)(N) = kerπN ∩ ∆(2) the kernel (of the

restriction).

Further, let

WN := ∆/∆(2)Γ(N). (5.1.8)

Corollary 5.1.9. The following diagram is commutative and has exact rows and
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columns:

1

��

1

��

1

��

1 // Γ(2)(N) //

��

Γ(N) //

��

Γ(N)/Γ(2)(N) //

��

1

1 // ∆(2) //

��

∆ //

πN

��

∆/∆(2) //

��

1

1 // G
(2)
N

//

��

GN
//

��

WN
//

��

1

1 1 1

(5.1.10)

Proof. The proof is immediate.

Let GN := πN(∆) ≤ PGL2(ZE/N) be the image of πN. Before we characterize

GN, we note one additional feature.

The right-hand vertical map in (5.1.2) has kernel the center Z(SL2(ZE/N))/{±1}

consisting of unsigned scalar matrices of determinant 1, a group isomorphic to

ZN := (ZE/N)×/{±1}(ZE/N)×2, (5.1.11)

the quotient of (ZE/N)× by the subgroup generated by squares and ±1. Let υs ∈ ZN

be the image of υs for s = a, b, c, well-defined by Lemma 3.2.3.

Corollary 5.1.12. If GN ≤ PSL2(ZE/N), then πN factors through a lift

πN,1 : ∆ → SL2(ZE/N)/{±1}.

Proof. We may take υs = 1 in Lemma 3.2.3 for all s = a, b, c.

57



5.1 Extra setup

Corollary 5.1.13. Suppose that N is coprime to dF |E. Then there is a commutative

diagram

1 // G
(2)
N

//

��

GN
//

π′
N

��

WN

��

// 1

1 // PSL2(ZE/N) // PGL2(ZE/N) det // (ZE/N)×/(ZE/N)×2 // 1

(5.1.14)

and the map πN fits into a diagram

∆
πN // //

π′
N

(( ((

GN ≤ SL2(ZF/NZF )/{±1}

����

G′
N ≤ PGL2(ZE/N)

(5.1.15)

Proof. Returning to the proof of Lemma 3.2.3, we now rescale the map (2.3.1) by

sending δs 7→ (δ2s + 1)/θs when s ̸= 2 (modified similarly when s = a = 2); then

nrd((δ2s + 1)/θs) =
λ22s
θ2s

=
λs + 2

θ2s
= υs ∈ Z×

E,(N). (5.1.16)

The reduction modulo N yields the map π′
N : ∆ → GN. The restriction to G

(2)
N maps

to SL2(ZE/N)/{±1} which surjects onto PSL2(ZE/N).

Remark 5.1.17. Understanding the bottom row of (5.1.10) turns out to be quite

involved when N is composite, owing to the following issues:

• We have equality G
(2)
N = SL2(ZE/N)/{±1} when N is prime, but only an in-

clusion G
(2)
N ≤ SL2(ZE/N)/{±1} when N is not coprime to 6;

• The natural map SL2(ZE/N)/{±1} → PSL2(ZE/N) (vertical maps in (5.1.14))

has a nontrivial kernel when N is not prime, leaving several possible interpre-
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tations of the Borel-type subgroups (coming from additional involutions).

We begin by describing the finite quotient WN.

Lemma 5.1.18. The following statements hold.

(a) The group WN is an elementary abelian 2-group of rank at most 2. More pre-

cisely, WN is isomorphic to the subgroup of Gal(F |E) generated by the set

{Frobp : p | N odd} ∪ {Frobp : p | N even and ordp(N) > ordp(4)}.

(b) The group WN ≤ (Z/2Z)2 is effectively computable.

(c) Let N2 := N/(2ZE + N). Suppose that a ̸= 2 and for all s = a, b, c we have

λ2s ̸∈ N2ZF . Then WN = ∆/∆(2).

The exceptional levels N in Lemma 5.1.18(b) where the hypotheses do not hold

are Gal(F/E)-invariant divisors classes of one of 2λ2s for s = a, b, c, so the associated

(a, b, c) are finite in number; we call such N lamentable.

Proof. We recall that F = E(λ2a, λ2b, λ2c) where λ22s = λs + 2. We start showing

part (a). By hypothesis, the ideal p | N is unramified in F . If p | N is even then

υs ≡ 1 (mod 4ZE) for s = {a, b, c}. If pe ∥ N is odd, it follows that µs ∈ (ZE/p
e)×2

if and only if the element Frobp ∈ Gal(E(λ2s) |E) is trivial; and for pe ∥ N, we

automatically have µs ∈ (ZE/p
e)×2 whenever e ≤ ordp(4), and when e > ordp(4), we

have µs ∈ (ZE/p
e)×2 if and only if Frobp ∈ Gal(E(λ2s) |E) trivial. We conclude by

the Sun Zi theorem (CRT).
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For (b), we can compute the quaternion order O explicitly and compute the map

(5.1.1) by recognizing the matrix ring [73]. The quotient is finite; hence we can

compute the image of the subgroup of squares and then the quotient.

Finally, part (c) follows from part(a).

Putting together Corollary 5.1.13 and Proposition 5.1.5, the right-hand vertical

map of (5.1.2) sits in an exact sequence

1 → µ2(ZE/N)/{±1} → SL2(ZE/N)/{±1} → PGL2(ZE/N)
det−→ (ZE/N)×/×2 → 1

(5.1.19)

where µ2(R) := {x ∈ R× : x2 = 1} for a ring R.

Applying these to (2.3.1), we obtain the following corollary.

Corollary 5.1.20. If p ∤ βdF |E, the diagram

1 // Γ(2)(N) //
� _

��

∆(2) //� _

��

SL2(ZE/N)/{±1}� _

��

1 // Γ(N) // ∆ // SL2(ZF/NZF )/{±1}

is commutative, with exact rows.

Proof. In the bottom row of (2.3.1), we have isomorphisms O/NO ≃ M2(ZF/NZF )

and (O/NO)1/{±1} ≃ SL2(ZF/NZF )/{±1}. The top row is similar, applying Propo-

sition 5.1.5.
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Section 5.2

Admissibility

We recall the definition of admissibility (Definition 3.3.4). Given a triple (a, b, c), an

ideal N ⊆ ZE(a,b,c) is admissible for (a, b, c) if

• N is coprime to discrd(Λ)dF |E, and

• the order of πN(δs) is equal to s for all s = a, b, c.

In this section, we study admissible triples and, given an inadmissible triple, we find

its corresponding admissible triple. To do so, we explicitly describe the order of the

images of the ∆(a, b, c) generators under the map πN from (5.1.15). We record our

findings in Proposition 5.2.4 and Corollary 5.2.7. In order to prove the proposition,

we need the following technical lemmas.

Lemma 5.2.1. Let p be an odd prime. Let F be an abelian number field which

contains ζpk but not ζpk+1 with k ≥ 1. Let pF be a prime ideal of ZF above p and

e ≥ 1. Then the smallest r ≥ 1 for which ζr
pk

≡ 1 (mod peF ) is

ξ(p, k, e)pk,

where

ξ(p, k, e) := pmin(0,⌈logp(e)⌉−k).

In particular, we have that ζpk ≡ 1 (mod peF ) if and only if e = 1.

Proof. Let s := pk. Since F is abelian over Q, we can write it as a compositum

F = KL, where K := F ∩Q(ζp∞) and L is such that Q(ζp∞) ∩ L = Q. In particular,
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p does not ramify in L. Thus, the ramification of p in F is measured only by the

ramification of p in K.

Let P be a prime of K above p. We have P = (ζs − 1). Hence, ζs ≡ 1 (mod P)

if and only if e = 1.

Now we assume that e > 1. The order of ζs modulo Pe divides pk. We have ζp
pk

is

a pk−1-th primitive root of unity in K. Thus, the element ζp
pk

− 1 is a uniformizer in

the subfield K ′ := Q(ζpk−1). We have [K : K ′] = p, and the prime above p is totally

ramified in this extension. This implies that ζp
pk

− 1 ∈ Pp. We can keep on going

until the power of P is larger than e, or until the subfield is Q(ζp). Thus, the order

of ζs modulo Pe is ξ(p, k, e)pk as desired.

Recall that given a number field L and a prime ideal p, we denote the completion

of ZL at p by ZL,p.

Lemma 5.2.2. Let s ≥ 1, let L be a number field containing a primitive root of unity

ζ2s of order 2s, let p be a prime ideal of L, and let M ∈ GL2(ZL,P) be a matrix with

characteristic polynomial x2 − λ2sx + 1. Then there is an (integral) change of basis

such that M is conjugate over GL2(ZL,P) to

ζ2s −ζ22s

0 ζ−1
2s

 . (5.2.3)

Proof. The regular representation gives an integral change of basis to the matrix in

rational canonical form as 0 −1

1 λ2s


(see [74, (30.5.4)]). We can (integrally) make a change of basis to get this matrix to
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be upper-triangular by conjugating by the matrix

ζ2s 0

1 ζ−1
2s


to obtain the matrix in (5.2.3).

Proposition 5.2.4. Let (a, b, c) be a hyperbolic triple with a, b, c ∈ Z≥2. Let pF be a

prime ideal of ZF and e ≥ 2. Let p be the prime below pF and assume that p ̸= 2.

Let M2s ∈ GL(ZF,pF ) be a matrix with characteristic polynomial x2 − λ2sx + 1 for

2s = s0p
k with p ∤ s0 and k ≥ 0. Then the order of the reduction of M2s modulo peF is

orde
p(M) :=



s0, if e = 1 and s is not a power of p;

2 · p, if e = 1 and s is a power of p;

2 · s · ξ(p, k, e) if e > 1 and e is not a power of p;

2 · s · p · ξ(p, k, e) if e > 1 and e is a power of p.

where ξ(p, k, e) is as before if k ≥ 1 and ξ(p, 0, e) = 1.

Proof. The case e = 1 follows from Proposition 3.3.5.

Let P be a prime ideal of F (ζ2s) above pF . We can use the injective group

homomorphism

SL2(ZF,pF ) ↪→ SL2(ZF (ζ2s),P)

to consider M as en element of the ring ZE(ζ2s),P. This does not change the order of

M because of injectivity.

We write 2s = s0p
k, where p ∤ s0. By the Sin Zi theorem (CRT), the order of ζ2s
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modulo Pe equals the product of the orders of ζs0 and ζpk modulo Pe. Since p ∤ s0,

the order of ζs0 is s0 modulo Pe. By Lemma 5.2.1, the order of ζpk modulo Pe is

ξ(p, k, e)pk. In total, the order of ζ2s is

r := s0ξ(p, k, e)p
k = sξ(p, k, e).

By Lemma 5.2.2, we have that M is conjugate to the matrix

M :=

ζ2s −ζ22s

0 ζ−1
2s

 . (5.2.5)

Thus, the orders of M and M2s are equal. By recursion, the matrix M t has diagonal

[ζt2s, ζ
−t
2s ] and upper-right entry equal to

−ζ32s
t−1∑
i=0

(
ζ22s
)i
.

Thus, the smallest power of M that has diagonal entries equal to 1 is r. In this case,

the upper-right entry equals

−ζ32s
(ζ22s)

r − 1

ζ2s − 1
.

Since p ̸= 2, then (ζ22s)
r − 1 = (ζ2s − 1)r. By the proof of Lemma 5.2.1, the quotient

belongs to Pe only when e is not a power of p. Otherwise, the proof of Lemma 5.2.1

allows us to conclude that the upper-right entry of M rp is zero modulo Pe, so the

order of M is rp.

Remark 5.2.6. Proposition 5.2.4 does not deal with the case s = ∞. We believe that

in this case, the order is the same as the order when s = pe. We hope to show this in
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5.2 Admissibility

upcoming work.

Corollary 5.2.7. Let (a, b, c) be a hyperbolic triple with a, b, c ∈ Z≥2. Let NF be an

ideal of ZF with nZ = NF ∩Q and n = pe11 · · · perr where pi ̸= pj for i ̸= j. Recall the

homomorphism πN from (5.1.15). Then the order of πN(δs) ∈ PSL2(ZF/NZF ) is

lcm
{
ordei

pi
(M)

}r
i=1

.

Proof. The result follows immediately from Proposition 5.2.4 and the Sun Zi theorem

(CRT).

The upshot of Corollary 5.2.7 is that redundancies like in Example 3.3.2 do not

arise under the admissibility hypothesis.

Theorem 5.2.8 (Clark–Voight). Suppose that either

• (a, b, c) is arithmetic, or

• for all primes p | N with Nm(p) ≤ 3 we have p ∥ N.

Then πN(G
(2)
N ) = PSL2(ZE/N) and

πN(GN) = {ν ∈ PGL2(ZE/N) : det(ν) ∈ ⟨±υs : s ̸= 2⟩}.

Proof. When p ∤ discrd(Λ)βdF |E, this follows from Theorem 3.3.1. The group GN

maps onto PSL2(ZE/p) or PGL2(ZE/p) for each p | N according as p splits in F ⊇ E

or not; but this is exactly measured by the group ⟨±υs : s ̸= 2⟩, by Lemma 3.2.3.

Remark 5.2.9. We note that, in the same way as in section 3.4, some hyperbolic

triples are inadmissible and reduce to non-hyperbolic triples. When considering com-

posite level, the problem of characterizing these triples is more challenging, and this
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5.3 Congruence subgroups

phenomenon is rare. Since these cases fall out of the scope of this project’s interest,

we do not study these triples.

Section 5.3

Congruence subgroups

In the same way as for the curvesXi(a, b, c; p) for i = 0, 1 and p prime from section 3.5,

we define curves Xi(a, b, c;N) for N not prime and i = 0, 1. We stress some of the new

features of this definition. We have analogous definitions of the Borel-type congruence

subgroups Γ0 and Γ1 as follows.

Let
a b

0 d

 : a, b, d ∈ ZE/N and ad ∈ (ZE/N)×

 ≤ GL2(ZE/N) (5.3.1)

be the upper-triangular matrices in GL2(ZE/N), and let H0,N be its image in the

projection to PGL2(ZE/N). Similarly, let


a b

0 a

 : a, b ∈ ZE/N and a1 = 1

 ≤ GL2(ZE/N) (5.3.2)

be the upper unipotent subgroup and H1,N′ again its image in PGL2(ZE/N).

There is an essential difference that goes back to the issue presented in Re-

mark 3.2.8. We define the subgroups

Γ0(a, b, c;N) := φ−1
N (H0,N),

Γ′
1(a, b, c;N) := φ−1

N (H ′
1,N).

(5.3.3)
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We then get the corresponding quotients

X0(a, b, c;N) := Γ0(a, b, c;N)\H = H0,N\X ′(a, b, c;N)

X ′
1(a, b, c;N) := Γ′

1(a, b, c;N)\H = H ′
1,N\X ′(a, b, c;N)

(5.3.4)

and natural quotient maps

X(a, b, c;N) → X ′
1(a, b, c;N) → X0(a, b, c;N) → X(a, b, c; 1) ≃ P1. (5.3.5)

The reason for the prime superscript is explained by the following lemma. Recall

that for a subgroup H ≤ G, the normal core is
⋂

g∈G g
−1Hg, the largest normal

subgroup of G contained in H.

Lemma 5.3.6. The following statements hold.

(a) The normal core of the subgroup (5.3.1) in GL2(ZE/N) is the central subgroup

of scalar matrices, isomorphic to (ZE/N)×.

(b) The normal core of the intersection of SL2(ZE/N) with the subgroup (5.3.1) is


a 0

0 a

 : a ∈ ZE/N and a2 = 1

 ≃ µ2(ZE/N). (5.3.7)

(c) The normal core of (5.3.2) in GL2(ZE/N) (and in SL2(ZE/N)) is trivial.

Proof. For part (a), we see that every matrix in the normal core must be upper

triangular with the duplicate entries in the diagonal by taking g as the identity in

G. By taking g as a lower-triangular matrix with non-zero entries equal to 1, we

conclude that any element in the normal core must be a scalar matrix. Moreover,
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5.3 Congruence subgroups

scalar matrices are clearly in the normal core, so these sets must be equal. Part (b)

follows immediately from this, and a similar argument gives part (c).

By Galois theory, the normal closure of the fixed field of a subgroup H ≥ G

in a G-Galois extension is the fixed field by the normal core of H. In our case,

since the quotients by the normal core in cases (a) and (b) are PGL2(ZE/N) and

PSL2(ZE/N), respectively, we can work directly with the reduction map πN for the

curves X0(a, b, c;N). The same is true for X ′
1(a, b, c;N) when µ2(ZE/N) = {±1}; this

is why we did not encounter this issue for prime level in section 3.5.

In general, when µ2(ZE/N) > {±1}, to define the curves X1(a, b, c;N), we work

as follows. Recalling Corollary 5.1.12, in the special case where GN ≤ PSL2(ZE/N),

we have a lift to SL2(ZE/N)/{±1}, so we repeat all of the above definitions but take


1 b

0 1

 : b ∈ ZE/N

 ≤ GL2(ZE/N) (5.3.8)

and its the image H1,N in SL2(ZE/N)/{±1} and define

X1(a, b, c;N) := Γ1(a, b, c;N)\H = H1,N\X(a, b, c;N). (5.3.9)

We obtain quotient maps as in (5.3.5) with the additional map

X1(a, b, c;N) → X ′
1(a, b, c;N). (5.3.10)

Our strategy to compute the genera of the curves X0(a, b, c;N) and X ′
1(a, b, c;N)

will be similar to the one from the previous chapter. We first describe the ramification
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and degree of the cover X0(a, b, c;N) → P1 and then exploit that to describe the cover

X ′
1(a, b, c;N). The final step is studying the cover X1(a, b, c;N) → X ′

1(a, b, c;N), a

cover of at most degree 2.

Section 5.4

Algorithm

Let N ⊆ ZE be a nonzero ideal. For any prime p | N dividing N, there is a cover

X0(N) → X0(p), so by the Riemann–Hurwitz formula, if X0(a, b, c;N) has genus

bounded above by g then so doesX0(a, b, c; p). In this section, we present an algorithm

to compute the genus of X0(a, b, c;N). We also show that there are finitely many

admissible curves X0(a, b, c;N) of bounded genus.

The main difference with the prime level case is that the Galois group GN of the

cover X0(N) → P1 is not necessarily isomorphic to PXL2(Fq) (see Theorem 5.2.8).

We now present an algorithm to compute this group explicitly.

Algorithm 5.4.1 (Compute GN).

Input: a hyperbolic triple (a, b, c) ∈ (Z≥2∪{∞})3 and a nontrivial, admissible, nonzero

ideal N ⊆ ZE.

Output: returns true and the group GN := πN(∆) if N is coprime to discrd(Λ) and

βdF |E. Otherwise, it returns false.

1. For every prime divisor p of N do the following. Compute the residue field degree

of p|N in E(a, b, c) and the residue field degree of p′ in E(a♯, b♯, c♯), where p′ is

an ideal of E(a♯, b♯, c♯) above p. If these are different, return false.

2. If N is not coprime to βdF |E, return false.
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3. If discrd(Λ) is not coprime to N, return false.

4. For all prime powers exactly dividing N (pe ∥ N), compute a ring homomor-

phism ιp : Λ → M2(ZE/p
e).

5. For each p | N, find the (matrix) image of ιp(δs) for s = a, b, c by using

Lemma 3.2.3.

6. Using the Sun Zi Theorem (CRT)

ιN : Λ → M2(ZE/N) ≃
∏
pe∥N

M2(ZE/p
e)

compute ιN(δs) for s = a, b, c.

7. Let GN be the subgroup of PGL2(ZE/N) generated by the elements ιN(δ). If GN

contains PSL2(ZE/N), return true, else return false.

Proof of correctness. This algorithm computes GN by definition. Step 1 ensures that

the group is Borel-type (so the triple is admissible) and this step can be done in

a finite field extension (see [56]). Step 4 can be computed following Voight [73,

(IsMatrixRing)].

A Magma [17] implementation of this algorithm is available online [34]. With

this algorithm, we can compute the image GN and thereby the genus of any curve

X0(a, b, c;N).

Algorithm 5.4.2 (Compute the genus of X0(a, b, c;N)).

Input: a hyperbolic triple (a, b, c) ∈ (Z≥2 ∪ {∞})3 and a nontrivial nonzero ideal

N ⊆ ZE(a,b,c).
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Output: returns true and the genus of X0(a, b, c;N) if N is admissible. Otherwise,

it returns false.

1. Run Algorithm 5.4.1 for (a, b, c) and N. If false, then return false. If true,

let GN be the algorithm’s output.

2. Find the action of each δ̄s = ιN(δs) on GN/H0 for s ∈ {a, b, c}. This description

gives the ramification of the degree #GN/H0 cover X0(a, b, c;N) → P1.

3. Use Riemann-Hurwitz to compute the genus of X0(a, b, c;N).

Proof of correctness. Follows by the definition of X0(a, b, c;N) and the Riemann–

Hurwitz formula.

This algorithm provides an independent way to check the results of section 4.5.

Giving a formula for the composite case is more complicated since the structure of

GN may be more complex, and the ramification behaves differently.

Lemma 5.4.3. Let Y → X be a map of degree greater than 1 with genus(X) ≥ 2.

Then we have

genus(Y ) > genus(X). (5.4.4)

Proof. Follows immediately from the Riemann-Hurwitz formula.

Lemma 5.4.5. Let (a, b, c) be a hyperbolic triple and let N be a nontrivial ideal of E.

If X0(N) has genus g, then for all primes p | N, the curve X0(p) has genus bounded

above by g.

Proof. It follows from the existence of the cover X0(N) → X0(p) and the Riemann-

Hurwitz formula.
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From Lemma 5.4.5 and Corollary 4.4.6 we can conclude that if the genus of X0(N)

is bounded by g, then the list of possible prime ideals that can divide N is finite.

The list of triples and prime divisors of N can be computed explicitly using Algo-

rithm 4.5.2. It remains to show that the power of the primes dividing N can be

bounded above.

Algorithm 5.4.6 (Enumerate curves X0(a, b, c;N) of bounded genus).

Input: an integer g0 ∈ Z≥0.

Output: The list of all hyperbolic triples (a, b, c) and admissible nontrivial ideals N

such that X0(a, b, c;N) has genus bounded above by g0.

1. Use Algorithm 4.5.2 to enumerate the finitely many hyperbolic triples (a, b, c)

and admissible prime ideals p that give rise to curves X0(a, b, c; p) of genus

g ≤ g0. Add to this list the triples (3.4.1), namely

(3, 3, 3; p3), (2, 3, 3; p3), (2, 3, 4; p3), (2, 3, 5; p2), (2, 3, 5; p5).

2. For each (a, b, c) on the list, set Lprime, L, and lowGenus as the list of all prime

ideals that appear on the list from Step 1 associated to (a, b, c). Then repeat the

following step until the list L is empty.

3. Initialize the empty list Lnew. For each element N of L do the following. For

each prime ideal p of Lprime, let p be the prime of Z below p. Use Algo-

rithm 5.4.2 to compute the genus g of the curve X0(a, b, c;N ·p). If g ≤ g0, then

add (a, b, c;Np) to the lists lowGenus and Lnew. If N + p = ZE, then compute

the genus gea,eb,ec of the curves X0(a · pea , b · peb , c · pec ;N · p), where es ∈ {0, 1}
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for s ∈ {a, b, c}. If gea,eb,ec ≤ g0, then add (a · pea , b · pea , c · pea ;N · p) to the lists

lowGenus and Lnew. Once done with all possible products, set L equal to Lnew.

4. Return the list lowGenus.

The following lemma is necessary to prove the correctness of the algorithm.

Lemma 5.4.7. If Algorithm 5.4.6 terminates for g0 = 1, then it terminates for all

g0 ≥ 0.

Proof. Given g0 ≥ 2, the genera of the curves X0(a, b, c;Np) in Step 3 are 0, 1, or

at least 2. However, there are only finitely many such curves with genus 0 or 1 by

assumption. Lemma 5.4.5 implies that when the genus of (a, b, c;N) is g ≥ 2, the

genus of the new curve with level N · p must have strictly larger genus. Hence the

process of multiplying by prime ideals in Step 3 will stop eventually.

Proof of correctness of Algorithm 5.4.6. By Lemma 5.4.5, every curve X0(a, b, c;N)

with genus g ≤ g0 covers the curve X0(a, b, c; p) with genus bounded above by g0 and

p any prime ideal dividing N. This ensures that starting with the list in Step 1 allows

us to enumerate all possibilities. By Corollary 5.2.7, if N is admissible for (a, b, c),

then Np is admissible for (apea , bpeb , cpec), where es ∈ {0, 1} for s ∈ {a, b, c}.

We run aMagma [17] implementation of Algorithm 5.4.6 with g0 = 1. This process

terminates and gives a finite list of triples and ideals. Then Lemma 5.4.7 implies that

the algorithm terminates for all g0 ≥ 0.

Remark 5.4.8. Our Magma [17] implementation to enumerate curves X0(a, b, c;N) of

genus 0 and 1 is time and memory-consuming. For a faster algorithm, see the ideas

in section 5.7.
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Proposition 5.4.9. For any integer g0 ≥ 0, there are finitely many triangular mod-

ular curves X0(a, b, c;N) of genus bounded above by g0 with (a, b, c) ∈ (Z≥2 ∪ {∞})3

hyperbolic and N admissible.

Proof. Running Algorithm 5.4.6 for g0 = 0 and g0 = 1, we find that the algorithm

terminates (with finitely many curves output). The correctness then follows from

Lemma 5.4.7.

Our implementation of Algorithm 5.4.6 is available online [34].

Section 5.5

Triangular modular curves X1(a, b, c;N)

We first study the curves X ′
1(a, b, c;N) and prove the finiteness result and correspond-

ing enumeration algorithm for these curves. Afterwards, we recall that we have an

additional map X1(a, b, c;N) → X ′
1(a, b, c;N) as in (5.3.10). This map is at most a

degree two cover and we completely characterize it in terms of (a, b, c) and N. This

allows us to conclude with the same kind of results for curves X1(a, b, c;N).

Algorithm 5.5.1 (Genus of X ′
1(a, b, c;N)).

Input: a hyperbolic triple (a, b, c) ∈ (Z≥2 ∪ {∞})3 and a nontrivial nonzero ideal N

of E such that N ∤ βdF |E.

Output: the genus of X ′
1(a, b, c;N).

1. Compute GN from Algorithm 5.4.1.

2. Find the action of each δ̄s on GN/H1 for s ∈ {a, b, c}. This gives the ramification

of the cover X ′
1(a, b, c;N) → P1. The degree of this cover is #GN/H1.
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3. Use Riemann-Hurwitz to compute the genus of X ′
1(a, b, c;N).

Proof of correctness. Follows from the Riemann-Hurwitz formula.

Algorithm 5.5.2 (Enumerate curves X ′
1(a, b, c;N) of bounded genus).

Input: an integer g0 ∈ Z≥0.

Output: a list lowGenusX1 of all hyperbolic triples (a, b, c), admissible ideals N such

that the genus of X ′
1(a, b, c;N) is g ≤ g0.

1. Loop over all hyperbolic triples (a, b, c) and ideals N such that X0(a, b, c;N) has

genus bounded above by g0. This list can be obtained from Algorithm 4.5.2,

Proposition 5.4.9, and Proposition 3.4.1.

2. For each triple (a, b, c) and ideal N of the previous step, compute the genus g of

X ′
1(a, b, c;N). For this, use Corollary 4.6.4 if N is prime, or Algorithm 5.5.1

otherwise. If g ≤ g0, add (a, b, c;N) to the list lowGenusX1.

Proof of correctness. For all hyperbolic triples (a, b, c) and ideals N there are maps

X ′
1(a, b, c;N) → X0(a, b, c;N) as in (5.3.5). Thus, the only curves X ′

1(a, b, c;N) that

can have genus g ≤ g0 must be covering curves X0(a, b, c;N) of genus bounded above

by g0.

Example 5.5.3. In fact, there are only two examples of potential genus ≤ 2 curves

of the form X ′
1(a, b, c;N) with N composite: namely, with (a, b, c) = (2, 3, 7) with

N = p2 with Nm p = 7, and (2, 4, 5) with N = p2 with Nm p = 5.

In the first case, we have g(X0(2, 3, 7; p
2)) = 1 with elliptic points of order 3, and

g(X ′
1(2, 3, 7; p)) = 0 with three elliptic points of order 7. It follows that X ′

1(2, 3, 7; p
2)
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has no elliptic points, so with the degree of the cover being 56 · 21 = 1176 we get

g(X ′
1(2, 3, 7; p

2)) = 1 +
1176

2
· 1

42
= 15.

A similar argument applies in the second case: for X0(2, 4, 5; p
2) we have genus 2

with two elliptic points of order 2 and for X ′
1(2, 4, 5; p) we have genus g = 0 with four

elliptic points of order 5; the degree is 30 · 10 = 300 and

g(X ′
1(2, 4, 5; p

2)) = 1 +
300

2
· 1

10
= 16.

Remark 5.5.4. As noted in section 5.3, the cover X1(a, b, c;N) → X ′
1(a, b, c;N) is

not an isomorphism only when the group GN is contained in PSL2(ZE/N) and

µ2(ZE/N) ̸= {±1}. This is, N is the product of at least two distinct primes and

for all primes p|N, we have Gp
∼= PSL2(ZE/p). In this case, we can use Lemma 5.3.6

to compute the degree of the cover and the genus of X1(a, b, c;N).

Section 5.6

Main theorem

We are now ready to present the main result of this part of the thesis.

Theorem 5.6.1. For any g ∈ Z≥0, there are only finitely many Borel-type triangular

modular curves X0(a, b, c;N) and X1(a, b, c;N) of genus g with nontrivial admissible
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level N ̸= (1). The number of curves of genus at most 2 are as follows:

Genus 0 1 2

X0(a, b, c;N) 71 190 153

X1(a, b, c;N) 28 51 36

Proof of Theorem 5.6.1. By Proposition 5.4.9, there are only finitely many curves

X0(a, b, c;N) with nontrivial admissible level N and genus g ≤ g0. Since every

curve X ′
1(a, b, c;N) covers X0(a, b, c;N), the same is true for X ′

1(a, b, c;N) (see Corol-

lary 4.6.1).

For the computation, we run Algorithm 4.5.2 with g0 = 2, adding extra cases

according to Proposition 3.4.1. The composite cases can be computed explicitly using

Algorithm 5.4.2. To finish, we run Algorithm 4.6.5. We implement this enumeration

in Magma [17], and the code is available in [34].

Section 5.7

Future work: computing monodromy with

embedding numbers

We fix a hyperbolic triple (a, b, c) which is admissible for an ideal N. Algorithm 5.4.2,

the algorithm to compute the genus of X0(N), is intricate and computationally expen-

sive. In contrast, for curves that are arithmetic, this computation is more straightfor-

ward: the ramification of the covers of P1 is entirely described by embedding numbers

(for example, see [74, section 39.4]).

In this section, we suggest a method to show that the same is be valid for triangular

modular curves; the genus of X0(N) is also be described by embedding numbers. The
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primary tool we use is strong approximation. This section is work with John Voight.

To make notation in this section simpler, we define the following piece of notation.

Given a group G and x ∈ G, we define

xG := {y−1xy : y ∈ G}.

We recall the task at hand is. By (5.3.5), there is a cover

X0(N) = Γ0(N)\H → ∆\H = P1.

The ramification of this cover is described by the existence of nontrivial stabilizers

(under conjugation) of subgroups of ∆ of finite order. We note that from the structure

of ∆, a subgroup of finite order is conjugate in ∆ to ⟨δis⟩ for s ∈ {a, b, c} and 1 ≤

i ≤ s. Thus, our task is to count the number of Γ0(N)-conjugacy classes of (δis)
∆
for

s ∈ {a, b, c} and 1 ≤ i ≤ s. The goal of using strong approximation is to bring this

computation to a question about conjugacy of matrices over a ring.

Strong approximation

The main result we will use is the following.

Theorem 5.7.1 ([21], Theorem C). Let p ∤ 2abc be a prime ideal of E. Recall the

map ιp : ∆(a, b, c) → PXL2(ZE,p). Then the image of ιp contains a dense subgroup of

PXL2(ZE,p).

Remark 5.7.2. Instead of working with the triangle group ∆(a, b, c), we can consider
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the theory of triangular modular curves by using extended triangle groups

∆̃ := ⟨δa, δb, δc,−1 | δaa = δbb = δcc = δaδbδc = −1, (−1)2 = 1, and − 1 ∈ Z(∆̃)⟩.

Proving strong approximation in this setting will allow us to avoid having to distin-

guish between the groups PSL and PGL.

For the rest of this section, we restrict to the case when there is a surjective map

∆ ↠ PSL2(ZE,p) for all p | N.

Lemma 5.7.3. Let G be a group and let H̃ and H be subgroups of G such that H̃ is

a subgroup of H and H̃ is normal in G. Let x ∈ G, then the H-conjugacy classes in

xG are in bijection with the H/H̃-conjugacy classes in (xH)G/H̃ .

Proof. We assume that r ∈ G and that there is h ∈ H with h−1xh = r−1xr. Then it

is clear that xH̃ is conjugate to (r−1H̃)(xH̃)(rH̃) by hH̃. Now, we assume that xH̃

and that there is hH̃ with h ∈ H such that

h−1H̃xH̃hH̃ = g−1H̃xH̃gH̃.

Then, there is H̃ ∈ H̃ with (hg−1)−1x(hg−1) = h̃. This implies that x and g−1hg are

conjugate by h ∈ H, concluding our proof.

Now we setup some notation for the next proposition. Let R := ZE,N and let B

be the quaternion algebra M2(R) with order

O =


x y

z w

 ∈ M2(R) : x, y, w ∈ R, z ∈ N

 .
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Proposition 5.7.4. Let δs be one of the generators of ∆ with s ∈ {a, b, c} and let

1 ≤ i < s. Then the Γ0(N)-conjugacy classes of (δis)
∆

are in bijection with the O-

conjugacy classes of (M i
s)

O1

, where Ms is a matrix with characteristic polynomial

x2 − λ2sx+ 1.

Proof. By strong approximation, there is a surjective map ∆ ↠ PSL2(ZE/N). Let

H0 be the image of Γ0(N) and letMs be the image of δs under this map. ThenMs has

characteristic polynomial x2−λ2sx+1. Applying this map, we have that the number

of Γ0(N)-conjugacy classes in (δis)
∆/Γ0(N)

is equal to the number of H0-conjugacy

classes in (M i
s)

PSL2(ZE/N)
. But PSL2(ZE/N) is a quotient of SL2(ZE,N) (and under

this quotient, H0 is the quotient of H0,N). Using Lemma 5.7.3, we conclude that the

number of conjugacy classes we are seeking equals the number of O-conjugacy classes

of (M i
s)

O1

.

Embedding numbers and monodromy

We maintain the assumption that there is a surjection ∆ ↠ PSL2(ZE/N). Before

we prove our result, we present the basic theory of embedding numbers based on [74,

section 30.3].

Let R be a local field. The theory of embeddings can be studied more generally

for R a Dedekind domain, but focusing on local fields is enough for our purposes.

Let π be the maximal ideal of R and let k := R/p be its residue field. Assume

F := Frac(R) and let B be a quaternion algebra over F . Let K be a separable

quadratic F -algebra such that K ↪→ B. We are interested in studying a special set of

embeddings φ : K ↪→ B. For that, we need to consider O ⊆ B a quaternion R-order

and S ⊆ K a quadratic R-order. We denote EmbR(S,O) as the set of embeddings

of S into O as R-algebras. We note that an embedding S ↪→ O gives an embedding
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K ↪→ B by extending scalars.

Since R is local, the R-order S is free, so S = R[γ] for some γ ∈ S. Let fγ(x) :=

x2 − tγx+ nγ be the minimal polynomial of γ and let dγ be its discriminant.

Definition 5.7.5. An R-algebra embedding φ : S ↪→ O is optimal if

φ(K) ∩ O = φ(S).

Let Γ be an order such that O1 ≤ Γ ≤ NB×(O). Then we have an action of Γ on

EmbR(S,O). For any γ ∈ Γ and any optimal embedding φ ∈ EmbR(S,O), we have

α 7→ γ−1φ(α)γ.

Then we define Emb(S,O; Γ) as the set of Γ-conjugacy classes of optimal embed-

dings S ↪→ O. Since we will be interested in counting them, we define

m(S,O; Γ) := #Emb(S,O; Γ).

To see formulas for computing optimal embedding numbers, see for example [74,

section 30.4].

Now we are ready to come back to our problem of computing ramification.

Proposition 5.7.6. Let Ms ∈ SL2(ZE,N) be a matrix with characteristic polynomial

x2 − λ2sx+ 1. Then the number of O-conjugacy classes of (Ms)
O1

is given by a sum

of optimal embedding numbers:

∑
S⊇R[Ms]

m(S,O;O1)
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5.7 Future work: computing monodromy with embedding numbers

Proof. By definition, the number of O-conjugacy classes of (Ms)
O1

equals the number

of embeddings from R[Ms] to O up to conjugation by O1. Now, let φ : R[Ms] ↪→ O

be an embedding. Then, S := φ−1(φ(R)∩O) is the unique order such that S can be

optimally embedded to O up to conjugating by O1.

We conclude with a computation of the ramification of the cover X0(N) → P1.

Corollary 5.7.7. Let (a, b, c) be a hyperbolic triple which is admissible for an ideal

N. Assume that there is a map ∆ ↠ PSL2(ZE/N). Then the ramification of the

cover X0(N) → P1 above the point corresponding to s ∈ {a, b, c} is given by

∑
1̸=t|s

(t− 1)
∑

S⊇R[Mt]
#S×/R×=s

m
(
S,O;O1

)
, (5.7.8)

where Ms ∈ O is a matrix with characteristic polynomial x2 − λ2sx+ 1.

Proof (sketch). Let mt be the number of cycles of order t and assume that mt > 0.

The order of each subgroup is determined by the trace of its generator. If gcd(i, n) =

1, then the the trace of δis is the same as the trace of δs modulo N. This is why

we restrict to divisors of s. Now, to ensure that the cycles have exactly order t, we

require #S×/R× = s. Then, the result follows from the previous discussion.
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Part II

Geometric quadratic Chabauty
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Chapter 6

Preliminaries

We first present an overview of the geometric quadratic Chabauty method and in-

troduce different incarnations of the Poincaré torsor. This work is joint with Sachi

Hashimoto and Pim Spelier and is part of [32].

Section 6.1

Overview and Setup

We first set up some notation and give a broad overview of the geometric quadratic

Chabauty method, then outline the contents of this part.

Let XQ be any smooth, projective, geometrically irreducible curve over Q with a

proper regular model X of XQ over the integers and a fixed base point b ∈ XQ(Q) =

X(Z). Let Xsm denote the open subscheme of X consisting of points at which X is

smooth over Z; then Xsm(Z) = X(Z). Let JQ denote the Jacobian of XQ and let J

denote the Néron model of JQ over the integers. Suppose JQ has Mordell–Weil rank

r and Néron–Severi rank ρ = ρ(JQ). Let p be a prime greater than 2 not necessarily

of good reduction for XQ.
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6.1 Overview and Setup

The goal in geometric quadratic Chabauty is to liftX into a non-trivialGρ−1
m -torsor

T over J through a section j̃b lying over the Abel–Jacobi embedding jb : X
sm → J .

Over Q we find this section j̃b by giving a trivializing section of the Gρ−1
m -torsor j∗bTQ

over XQ. If we want to spread this out over Z, there is an obstruction coming from

the multidegree.

Definition 6.1.1. The multidegree of a line bundle L on a curve C with geometrically

irreducible components (Ci)i∈I over Q is (degL|Ci
)i∈I .

The map Pic(X) → Pic(XQ) is not, in general, an isomorphism, and j∗bT is not

in general trivial over X since its multidegree over the fibers XFℓ
of X might be non-

zero. This is the only obstruction: the torsor can be trivialized over an open U ⊂ Xsm

constructed by picking one geometrically irreducible component in each fiber XFℓ
and

removing the other irreducible components. We call these fiberwise geometrically

irreducible open U ⊂ Xsm simple open sets. By [64, Tag 04KV] every irreducible

component of XFℓ
admitting a smooth Fℓ-point is geometrically irreducible. Hence

every point P ∈ Xsm(Z) is contained in U(Z) for a unique simple open U . There is

a finite number (Ui)i∈I of simple open sets that cover Xsm(Z). For every such open,

the map Pic(U) → Pic(XQ) is an isomorphism. We fix a simple open U and obtain

a trivialization j̃b : U → T lying over jb.

Because Gm(Z) = {±1} is finite, we can expect the closure of T (Z) inside the

(g + ρ − 1)-dimensional p-adic manifold T (Zp) to be of dimension at most r. The

image of the p-adic points of U , namely j̃b(U(Zp)), is of dimension 1. Given this T ,

we see the analog of the classical Chabauty’s theorem that applies to curves satisfying

the inequality r < g [20].

85

https://stacks.math.columbia.edu/tag/04KV


6.1 Overview and Setup

Theorem 6.1.2. [36, section 9.2] When r < g + ρ− 1, the intersection

j̃b(U(Zp)) ∩ T (Z) ⊂ T (Zp)

is finite.

Definition 6.1.3. The geometric quadratic Chabauty set X(Zp)Geo is defined to be the

union over the simple open sets i ∈ I of j̃b
∗
(j̃b(Ui(Zp)) ∩ T (Z)) ⊂ Ui(Zp) ⊂ X(Zp).

The geometric quadratic Chabauty method computes this finite set X(Zp)Geo,

working in one simple open U ⊂ X and one residue disk of U(Zp) at a time. In

Algorithm 8.1.1 we give an algorithm to determine j̃b(U(Zp))∩T (Z) to finite precision.

To construct the Gρ−1
m -torsor T over J we start with the universal Gm-torsor. In

our calculations, this takes the form of the Poincaré torsor M× over J × J0 (this is

a pullback of the Poincaré torsor over J × J∨0; for more details see chapter 6. Here

J∨0 is the fiberwise connected component of J∨ containing 0.

Remark 6.1.4. When p is a prime of good reduction for X, we have J0
Z(p)

= JZ(p)
and

J∨0
Z(p)

= J∨
Z(p)

.

By the universality of M×, we want to construct T by pulling back M× along

morphisms (id, αi) : J → J × J0 for i = 1, . . . , ρ− 1. Define

m := lcm{exp
(
(J/J0)(Fq)

)
| q prime}, (6.1.5)

where exp(G) ∈ N≥1 is the exponent of a finite group G. Note that m· : J → J0

is a well-defined morphism. Any morphism of schemes J → J can be written as a

translation composed with an endomorphism, and hence we choose our morphisms
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6.1 Overview and Setup

αi : J → J0 to be of the form m · ◦ trci ◦fi with ci ∈ J(Z) and fi : J → J a morphism

of group schemes.

The torsor T is the product T =
∏ρ−1

i=1 (id, αi)
∗M× as a fiber product over J . We

also let M×,ρ−1 be the product taken as a fiber product over J via the first projection

map M× → J × J0 → J . In order to embed U through a section j̃b : U → T , the

torsor T pulled back to U must be trivial: that is j∗b (id, αi)
∗M× must be trivial over

U . The torsor (id, αi)
∗M× over J can be thought of as the total space of a line bundle

without its zero section, and the condition that its pullback Lαi
:= j∗b (id, αi)

∗M× to

U is trivial forces the corresponding line bundle to be degree 0. Equivalently, the

trace of fi must be 0. The condition that Lαi
is trivial uniquely determines ci.

T M×,ρ−1

U J J × (J0)ρ−1jb

j̃b

(id,m·◦ trci ◦fi)i

(6.1.6)

Because the Néron–Severi rank of JQ is ρ, the Jacobian J has ρ − 1 independent

non-trivial endomorphisms of trace 0.

Definition 6.1.7. For Y a scheme, S a ring with residue field SpecFp → SpecS and

Q ∈ Y (Fp), we define the residue disk over Q, denoted by Y (S)Q := {y ∈ Y (S) | y =

Q}, to be the set of all S-points specializing to Q.

Let P ∈ U(Fp). The residue disk U(Zp)P embeds into the residue disk T (Zp)j̃b(P )

of T through the section j̃b. Since p > 2, we have that 1 and −1 reduce to different

points modulo p and hence the map T (Z)j̃b(P ) → J(Z)jb(P ) is a bijection. By [60,

Proposition 2.3] and the fact that p > 2 the residue disk J(Z)jb(P ) is up to a translation

isomorphic to Zr
p. In [36, Theorem 4.10] this bijection T (Z)j̃b(P ) → J(Z)jb(P ) is
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6.2 The Poincaré torsor P

upgraded to a morphism κ : Zr
p → T (Zp)j̃b(P ) with image exactly T (Z)j̃b(P ).

In this part of the manuscript, we explain how to make the geometric quadratic

Chabauty method explicit in the case where p is of good reduction by giving algo-

rithms to compute j̃b and κ in a residue disk as polynomials in parameters up to

finite precision. This process translates the geometric Chabauty method into solving

simple polynomial equations. We also give algorithms to work in residue disks of T

explicitly using p-adic heights and Coleman integrals. Moreover, by writing the geo-

metric quadratic Chabauty method in terms of p-adic heights and Coleman integrals,

we can prove Theorem C.

Section 6.2

The Poincaré torsor P

A crucial object of study in this part of the thesis is the Poincaré torsor. This has

four incarnations, which we introduce in this section, section 6.3, section 6.4, and

section 6.5. In this section, we present the first incarnation of the Poincaré torsor

P×
Q over JQ × J∨

Q , its biextension structure, and the torsor P× over the integers.

For more details on the Poincaré torsor and biextensions, see [54, section I.2.5] or

Grothendieck’s Exposés VII and VIII [40].

Given a line bundle L over a scheme S, there is an associated Gm-torsor L× defined

by taking the sheaf of non-vanishing sections, and similarly given a Gm-torsor Y there

is an associated line bundle Y ⊗O×
S
OS. Applying these associations to the Poincaré

bundle, we obtain the universal Gm-torsor P×
Q over JQ×J∨

Q , called the Poincaré torsor.
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6.2 The Poincaré torsor P

Alternatively,

P×
Q = IsomJQ×J∨

Q
(OJQ×J∨

Q
,PQ),

i.e. for a scheme S/(JQ × J∨
Q) we have that P×

Q (S) consists of isomorphisms of line

bundles OS → (PQ)S. This set P×
Q (S) is an OS(S)

×-pseudotorsor: either empty or

an OS(S)
×-torsor.

The Poincaré torsor P×
Q has the structure of a biextension over JQ × J∨

Q , as we

will now explain. Addition in J∨
Q corresponds to tensoring line bundles on JQ. This,

along with the theorem of the square, induces a partial group law on P×
Q . Let S be

a scheme over Q. For x ∈ JQ(S) and y1, y2 ∈ J∨
Q(S) we have a tensor product which

is an isomorphism of Gm-torsors

(x, y1)
∗P×

Q ⊗ (x, y2)
∗P×

Q → (x, y1 + y2)
∗P×

Q

that we denote by ⊗2 because we are adding on the second coordinate (while the first

coordinate stays fixed). Similarly since (J∨
Q)

∨ is canonically identified with JQ, we

also have the tensor product

(x1, y)
∗P×

Q ⊗ (x2, y)
∗P×

Q → (x1 + x2, y)
∗P×

Q

called ⊗1. These two partial group laws are compatible. Let x1, x2 ∈ JQ(S), y1, y2 ∈

J∨
Q(S), and zij ∈ (xi, yj)

∗P×
Q (S), for i, j ∈ {1, 2}. Then

(z11 ⊗2 z12)⊗1 (z21 ⊗2 z22) = (z11 ⊗1 z21)⊗2 (z12 ⊗1 z22).
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6.3 The biextension M

In other words, tensoring points in the biextension is not order-dependent. Together

with this compatibility, the structure of these two partial group laws over the product

JQ × J∨
Q make P×

Q a Gm-biextension over JQ × J∨
Q .

For our applications, we need to work over the integers. Let J0 be the fiberwise

connected component of J containing 0. This represents line bundles on C that are

fiberwise of multidegree 0. Let J∨ be the Néron model of J∨
Q and similarly let J∨0 be

the fiberwise connected component of J∨ containing 0. The Poincaré torsor extends

to a biextension P× over J × J∨0. In particular, the integer points of P× lying over

(x, y) ∈ (J × J∨0)(Z) form a Gm(Z)-torsor, i.e. a {±1}-torsor. So there is exactly

one integer point lying over (x, y), up to sign.

Section 6.3

The biextension M

To work with explicit computations of points in the Poincaré torsor in practice, we

need a few modifications of P×. We introduce two torsors over J × J0 given by the

biextension M× and the trivial biextension N .

We first discuss the construction of M× and the generating sections of its residue

disks. The Abel–Jacobi embedding induces an isomorphism j∗b : J
∨ → J and hence

an isomorphism j∗b : J
∨0 → J0. We define

M× := (id, j∗,−1
b )∗P×. (6.3.1)

For the torsor M×, we have an explicit description of the fibers. Let S be a scheme,

x ∈ J(S) be a point corresponding to a line bundle L, and y ∈ J0(S) be a point
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6.3 The biextension M

with representing divisor E = E+−E− such that E+ and E− are effective and of the

same multidegree. We denote the fiber (x, y)∗M× of M× over (x, y) ∈ (J × J0)(S)

by M×(x, y). This fiber M×(x, y) is the Gm-torsor

E∗L× := NormE+/S

(
L× |E+

)
⊗ NormE−/S

(
L× |E−

)−1
, (6.3.2)

which we also denote by NormE/S L×. When S = SpecZ we also write simply

NormE L×. This fiber can be thought of as the aggregate of how L looks around

E.

This description of the fiber is proven in [36, Proposition 6.8.7], and more general

facts about these norms can be found in [36, section 6]. Because equation (6.3.2) may

seem opaque, we provide some examples of how to apply the formula in practice.

Definition 6.3.3. Let S be a scheme. Let D and E be two relative Cartier divisors

on XS/S. We say D and E are disjoint over S if their support is disjoint as closed

subschemes of XS. In particular, it is not enough to have disjoint S-points if D or E

does not split completely over S.

Example 6.3.4. Let S be a scheme, [D] ∈ J(S), and [E] ∈ J0(S) be points of J and J0

with representing divisors D and E where E has multidegree 0. Assume D and E are

disjoint over S, and write E = E+ − E− with E+, E− effective. Then the Gm-torsor

E∗OX(D)× is generated by NormE+/S(1)⊗NormE−/S(1)
−1 where 1 is here seen as a

section of OX(D)×|E±1 . We also denote this generator by E∗1.

Example 6.3.5. Suppose the fiber of Xsm/Z over 2 is geometrically irreducible. Let

[D] ∈ J(Z) and [E] ∈ J0(Z) be points of J and J0 with representing divisors D and

E. Assume D and E are disjoint over Z[1
2
] and meet with multiplicity 1 over 2. Then
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6.3 The biextension M

E∗OX(D)× is generated by 2−1E∗1.

Remark 6.3.6. Let S be a scheme. If D = Div g ∈ Div0(XS/S) is the principal divisor

of a rational function g and is disjoint from E ∈ Div0(XS/S), then the isomorphism

OX(D) → OX given by multiplication by g induces an isomorphism E∗OX(D)× →

E∗O×
X sending E∗1 to E∗g(E) where g(E) ∈ Gm(S).

Remark 6.3.7. In general, if [D] ∈ J(Z), [E] ∈ J0(Z), and we have a choice of

representing divisors D and E that are disjoint over Q, using intersection theory we

can determine n ∈ Q× unique up to sign, such that NormE OX(D)× is generated by

n · E∗1. If E is not of multidegree 0, there is a unique vertical divisor V ⊂ C with

V + E of multidegree 0. In this case, one can compute the unique integer a up to

sign such that (E+V )∗OX(D)× = aNormE OX(D)×. This is treated in detail in [36,

section 6.9].

The partial group laws on M× are also very explicit: let [E], [E1], [E2] ∈ J0(S)

and L,L1,L2 ∈ J(S), then the group laws are given by the morphisms

E∗
1L× ⊗ E∗

2L× → (E1 + E2)
∗L× (6.3.8)

corresponding to ⊗2 and

E∗L×
1 ⊗ E∗L×

2 → E∗(L1 ⊗ L2)
× (6.3.9)

corresponding to ⊗1.

Example 6.3.10. Let x1, x2 ∈ J(Z) and y1, y2 ∈ J0(Z). Let zij ∈ M×(Z) be points

above (xi, yj) for i ∈ {1, 2}. Then for n1, n2,m1,m2 ∈ Z we can construct points
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6.4 The trivial biextension N

above (n1x1 + n2x2,m1y1 +m2y2) by the formula

(
z⊗2m1
11 ⊗2 z

⊗2m2
12

)⊗1n1 ⊗1

(
z⊗2m1
21 ⊗2 z

⊗2m2
22

)⊗1n2 .

This allows us to construct many integer points of M× by starting with a few

points that lie over generators of the Jacobian and then applying the partial group

laws. In section 7.3, we will use this idea to determine the integer points of the torsor

T landing in a specific residue disk of T .

Section 6.4

The trivial biextension N

In practice, we often translate between M, introduced in section 6.3, and the trivial

biextension N where we do our computations. We explain how to make this trans-

lation following [36, section 9.3]. From now on, we assume p > 2 is a prime of good

reduction for XQ.

Let [D] ∈ J(Qp) and [E] ∈ J0(Qp) be divisor classes with a choice of representing

divisors D and E that are disjoint over Qp. Then E∗OX(D)× is a Q×
p -torsor, trivial

with generator E∗1 by Example 6.3.4. Let hp be the cyclotomic Coleman–Gross local

height at p with respect to an isotropic splitting H1
dR(X) = H0(X,Ω1

X) ⊕W of the

Hodge filtration [25, Section 5]. Choose a branch of the logarithm with log p = 0 so

that it is compatible with hp. The height hp is a biadditive, symmetric pairing on

disjoint divisors of degree 0, taking values in Qp. For f , a rational function and Div f

its associated divisor, it also satisfies the equality hp(D,Div f) = log f(D).

Remark 6.4.1. The assumption that p is a prime of good reduction for X is used to
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6.4 The trivial biextension N

define the logarithm of JZp and to compute the Coleman–Gross height and iterated

Coleman integrals. There is a more general construction using Vologodsky integrals

to construct the Coleman–Gross height [12]. However, currently there is no known

way to compute this more general height for a prime of bad reduction.

We define a map

ψ : M×(Zp) → Qp (6.4.2)

E∗λ ∈ E∗OX(D)× 7→ log λ+ hp(D,E).

We define N to be the trivial Qp-biextension J(Qp)×J(Qp)×Qp over J(Qp)×J(Qp).

By definition, the partial group laws in N are just addition keeping one coordinate

fixed. Let [D], [D1], [D2] ∈ J(Qp) and [E], [E1], [E2] ∈ J0(Qp) and v1, v2 ∈ Qp. The

first group law is

([D1], [E], v1) +1 ([D2], [E], v2) = ([D1] + [D2], [E], v1 + v2).

The second group law is

([D], [E1], v1) +2 ([D], [E2], v2) = ([D], [E1] + [E2], v1 + v2).

Definition 6.4.3. We define the morphism of biextensions

Ψ: M×(Zp) → N

to be the projection M×(Zp) → J(Qp)× J(Qp) on the first two factors and ψ on the

last factor.
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6.4 The trivial biextension N

Remark 6.4.4. Since log(−1) = 0, the morphism Ψ sends the two integer points of

M×(Z) above a fixed integer point of J × J0 to the same point.

The following proposition appears in [36, Section 9.3] but is not proven.

Proposition 6.4.5. The map Ψ: M×(Zp) → N is a morphism of biextensions.

Proof. First, we show that Ψ is well-defined. For divisor classes [D] ∈ J(Qp) and

[E] ∈ J0(Qp) we can always choose representing divisors D and E with disjoint

support over Qp; we show that the choice of representing divisors D and E does not

matter. Suppose D = D′ + Div g for some rational function g with Div g disjoint

from E. Multiplication by g induces an isomorphism OX(D) → OX(D
′) sending

E∗1 7→ E∗g(E) by Remark 6.3.6. Under ψ, the section E∗λ in E∗OX(D) maps to

log λ+hp(D,E) while E
∗g(E)λ in E∗OX(D

′) maps to log λ+log g(E)+hp(D
′, E). But

since hp(Div g, E) = log g(E) we have the equality hp(D
′, E) + log g(E) = hp(D,E),

so the choice of representing divisor for [D] does not change the value of Ψ. By

symmetry of the norm [36, section 6.5], we can also conclude that Ψ does not depend

on the choice of representing divisor for [E].

Finally we show that Ψ preserves the two group laws (6.3.8) and (6.3.9). Consider

[D1], [D2] ∈ J(Qp), and [E] ∈ J0(Qp) with E disjoint from D1 and D2. Let E∗λ1 ∈

E∗OX(D1) and E∗λ2 ∈ E∗OX(D2). Under ψ, the section E∗λi maps to log λi +

hp(Di, E) for i = 1, 2. The group law ⊗1 in M× sends the sections to E∗(λ1λ2) in

E∗OX(D1 +D2). Under the map ψ, the section E∗(λ1λ2) is sent to

log(λ1λ2) + hp(D1 +D2, E) = log λ1 + log λ2 + hp(D1, E) + hp(D2, E).

Therefore Ψ preserves ⊗1. By symmetry of the norm, it also preserves ⊗2.
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6.4 The trivial biextension N

The following proposition relates this to the global p-adic height.

Proposition 6.4.6. Let [D] ∈ J(Z) and [E] ∈ J0(Z) with representing divisors D

and E that have disjoint support over Z(p). Let F be the unique vertical divisor such

that F + E has multidegree 0 on all fibers XFq . Let z ∈ M×([D], [E + F ])(Z). Then

ψ(z) = h([D], [E]) where h(·, ·) denotes the global p-adic height.

Proof. Let L = OX(D). Write F =
∑

q FFq where q ranges over the primes of bad

reduction for X and FFq has support in XFq . Then by [36, Proposition 6.9.3] we have

the equation

M×([D], [E]) =
∏
q

q−FFq ·D NormE(L×)

where q ranges over the bad primes.

Recall that NormE(L×) is by definition NormE/SpecZ(L×|E); this torsor is canoni-

cally identified with OSpecZ(
∏

q q
−(E·D)q)× and hence has generator

∏
q q

−(E·D)q , where

(E ·D)q denotes the intersection number of E and D over Z(q) taking values in Z.

In total, we see that under these identifications M×([D], [E +F ]) is generated by

the element E∗∏
q q

−((E+F )·D)q . By definition, for q ̸= p, we have that hq(D,E) is

−((E + F ) ·D)q log q, and hence we get

=
∑
q ̸=p

hq(D,E) + hp(D,E)

= h([D], [E])

as we wanted.

96



6.5 The torsor Tf

Section 6.5

The torsor Tf

We now are ready to define a Gm-torsor over J . We first set up some notation.

Recall from section 6.1 that we have fixed a simple open set U ⊂ Xsm that contains

the smooth points of one geometrically irreducible component of each fiber. Let

f be a trace 0 endomorphism of J . Recall the integer m from (6.1.5). The map

m · ◦f is a morphism J → J0. Let c ∈ J(Z) denote the unique element such that

j∗b (id,m · ◦ trc ◦f)∗M× is trivial over U . Let αf := m · ◦ trc ◦f . Let ξf : Tf → J denote

the Gm-torsor (id, αf )
∗M× over J . The trivialization of j∗b (id,m · ◦ trc ◦f)∗M× then

gives us a morphism j̃b,f : U → Tf of schemes over J .

Remark 6.5.1. If f is identically zero, then Tf is isomorphic to the trivial Gm-torsor

over J . If r < g this reduces to the geometric linear Chabauty case, see [63, 41] for

more details, but when r = g this trivial torsor contains no information.

As discussed in the overview, we work on the curve residue disk by residue disk,

and hence we will describe the residue disks of Tf , culminating in Lemma 6.5.9.

Throughout the rest of this section, fix a t ∈ Tf (Fp). We work inside the residue

disk Tf (Zp)t. Since Tf is trivial on fibers, the residue disk Tf (Zp)t is isomorphic to

J(Zp)ξf (t)×Gm(Zp)u for some unit u ∈ Fp. We would like to parametrize this residue

disk.

Definition 6.5.2. Let Y be a smooth scheme over Zp of relative dimension d, and

let y ∈ Y (Fp). We say t1, . . . , td are parameters of Y at y if they are elements of the

local ring OY,y such that the maximal ideal is given by (p, t1, . . . , td).

Define t′i := ti/p. Then evaluation of t′, the vector (t′1, . . . , t
′
d), gives a bijection
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6.5 The torsor Tf

t′ : Y (Zp)y → Zd
p. We call t′ a parametrization given by parameters ti.

Example 6.5.3. Take Y = Gm = SpecZp[x, x
−1] over Zp; this is of relative dimension

1. Let y = 1 ∈ Gm(Fp). Then x− 1 is a parameter at y; it induces a parametrization

θ : Gm(Zp)y → Zp given by u 7→ (u−1)/p. Note that the map log, defined by its power

series log(1+x) = x− x2

2
+· · · also induces a bijection φ = log /p : Gm(Zp)y → Zp, but

this is not a parametrization; it is not given by evaluating elements of the maximal

ideal, and is not even fully algebraic in nature. However, there is a relation between

φ and θ, in that θ ◦ φ−1 is given by the power series 1
p

(
xp− (xp)2

2
+ · · ·

)
∈ Zp[[x]].

In [36, Lemma 6.6.8] the residue disk Tf (Zp)t is parametrized using parameters at

t. However, this parametrization can be difficult to work with because it uses param-

eters in J . The group law of J expressed in these parameters is given by complicated

converging power series. It is possible to use this parametrization in practice: see for

example [52], where the Khuri-Makdisi representation [43] is generalized in order to

work with points of the Jacobian up to the required p-adic precision and compute

parameters of them; however, with this representation other steps of the algorithm,

like computing the image under an endomorphism, would be more difficult. Here,

we opt to use the logarithm of J instead to give a bijection between the residue disk

Tf (Zp)t and Zg+1
p that is not a parametrization in the sense of Definition 6.5.2. For a

definition of this logarithm, see [42]. To describe the relationship between this bijec-

tion and the parametrization of this residue disk we need the framework of convergent

power series.

Definition 6.5.4. Let n ∈ N. The ring of convergent power series in n variables is
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defined as

Qp⟨x1, . . . , xn⟩ :=

{∑
I∈Nn

aIx
I ∈ Qp[[x1, . . . , xn]] | lim

I→∞
|aI | = 0

}
,

where x = (x1, . . . , xn) is the vector of variables. An element of this ring is called an

integral convergent power series if it lies inside Zp[[x1, . . . , xn]]. The convergent power

series are those power series converging on all of Zn
p . Unlike formal power series, one

can always compose two (integral) convergent power series, since by definition the

resulting infinite sum inside the ring of (integral) convergent power series converges.

Remark 6.5.5. Let Y be a smooth scheme over Zp of relative dimension d, let y ∈

Y (Fp), and let θ, θ′ : Y (Zp)y → Zd
p be two parametrizations. Then the composite

θ′ ◦ θ−1 : Zd
p → Zd

p is given by (multivariate) integral convergent power series that are

linear modulo p, and in fact are of degree at most M modulo pM .

Lemma 6.5.6. Let G be a smooth, commutative group scheme over Zp of relative

dimension d. Let G(Zp)0 be the residue disk containing the unit 0 ∈ G(Zp). Let

θ : G(Zp)0 → Zd
p be a parametrization, and let log : G(Zp)0 → pZd

p be a choice of

logarithm. Then log ◦θ−1 : Zd
p → pZd

p is given by d integral convergent power series in

d variables. For n ≥ 0 the coefficient of a degree n monomial in one of these power

series has valuation at least max(1, n− vp(n)).

Proof. By [63, Lemma 3.7] the function log ◦θ−1 is given by integral convergent power

series. There the third author gives the vector-valued formula

log =
∑

I∈Nd\(0,...,0)

aIc|I|x
I
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where x = (x1, . . . , xd) is the vector of variables, the coefficients aI lie in Zp, the

notation |I| means i1 + · · ·+ id where I = (i1, . . . , id), and cn = pn/n. (In this paper

we do not divide by p in the log, unlike in [63]). The result follows immediately from

the observation that vp(c|I|) = |I| − vp(|I|).

The following result establishes the analyticity of the map ψ on residue disks of

M×.

Lemma 6.5.7 ([36, Section 9.3]). Let z ∈ M×(Fp). Let z̃ be a lift of z to M×(Zp).

Let Θ: Z2g+1
p → M×(Zp)z be a parametrization. Consider the map

ψz : M×(Zp)z → Qp

z 7→ ψ(z)− ψ(z̃)

p
.

Then ψz ◦Θ is given by a convergent power series.

As discussed above, we can now find a bijection between residue disks of Tf

and Zg+1
p . We use the logarithm of the Jacobian, which gives an isomorphism

log : J(Zp)0 → pZg
p by choosing a basis of H0(JZp ,Ω

1) as well as the map ψ de-

fined in (6.4.2). For ease of notation, we suppress the monomorphism Tf → M× in

our notation, and apply ψ directly to Tf (Zp).

Definition 6.5.8. Recall that we fixed a t ∈ Tf (Fp). Choose t̃ ∈ Tf (Zp)t to be a lift

of t. Let φf : Tf (Zp)t → Zg
p ×Qp be defined by

φf (z) = ((log ξf (z)− log ξf (t̃))/p, (ψ(z)− ψ(t̃))/p)

where ψ is defined in (6.4.2) and the map ξf : Tf → J is the structure morphism of
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Tf . We call φf a pseudoparametrization of the residue disk Tf (Zp)t.

Similarly to Example 6.5.3, this is not a parametrization; it shares some of the

properties of a parametrization, notably the property in Remark 6.5.5, as the following

lemma shows.

Lemma 6.5.9. The pseudoparametrization φf is injective, and for any parametriza-

tion θ : Tf (Zp)t → Zg+1
p the resulting map φf ◦ θ−1 : Zg+1

p → Zg
p ×Qp is given by g+1

convergent power series. The valuation of the coefficient of any degree n monomial

occurring in one of the first g convergent power series is at least max(0, n−1−vp(n)).

The valuation of the coefficient of any degree n monomial occurring in the last con-

vergent power series is at least n− 1 + v − 2⌊logp n⌋ (and at least 0 if n = 0) where

v is the constant from Lemma 6.5.7.

Proof. By Lemma 6.5.6 and Lemma 6.5.7 the pseudoparametrization is given by

convergent power series and the valuations of the coefficients behave in the required

way. It remains to prove that it is a bijection onto its image. First, note that the

maps 1
p
log : J(Zp)0 → Zg

p and 1
p
log : Gm(Zp)1 → Zp are bijections.

Let [D],m(f([D]) + c) ∈ J(Zp)0 with disjoint representing divisors D and E, and

let λ0, λ1 ∈ Gm(Zp) such that for i = 0, 1 we have ([D], [E], λi) ∈ Tf (Zp)t. Assume

that φf (([D], [E], λ0)) = φf (([D], [E], λ1)). Then we have that log λ + hp(D,E) =

log λ′ + hp(D,E) so, because
1
p
log is injective on residue disks, then λ = λ′, and φf

is injective.

By Lemma 6.5.6 the result follows.
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Section 6.6

The torsor T

Let f1, . . . , fρ−1 be a basis for the trace 0 endomorphisms of J . We simplify our

notation by setting ci := cfi , αi := αfi , Ti := Tfi , and ξi := ξfi : Ti → J .

Now we define ξ : T → J to be the Gρ−1
m -torsor given by the fiber product

T := T1 ×J T2 ×J · · · ×J Tρ−1.

Finally, let j̃b : U → T be a choice of morphism (well defined up to the choice of ρ− 1

signs) coming from the morphisms j̃b,fi : U → Ti.

As in section 6.5, we can pseudoparametrize residue disks of T .

Definition 6.6.1. Recall that we fixed a t ∈ T (Fp). We also fix t̃ = (t̃1, . . . , t̃ρ−1) ∈

T (Zp)t a lift of t. Let φ : T (Zp)t → Zg
p × Qρ−1

p be the map which sends (z1, . . . , zρ−1)

to

((log ξ1(z1)− log ξ1(t̃1))/p, (ψ(z1)− ψ(t̃1)/p), . . . , (ψ(zρ−1)− ψ(t̃ρ−1)/p)),

where ψ is defined in (6.4.2). We call φ a pseudoparametrization of the residue disk

T (Zp)t. (Recall that ξi(zi) and ξi(t̃i) are independent of i, since T is a fibered product

over J .)

Corollary 6.6.2. The pseudoparametrization map φ is a bijection onto its image,

and for any parametrization θ : T (Zp)t → Zg+ρ−1
p the resulting map φ◦θ−1 : Zg+ρ−1

p →

Zg
p ×Qρ−1

p is given by g + ρ− 1 convergent power series.

For any of the first g power series, the valuation of the coefficient of a degree n
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monomial is at least n − 1 − vp(n), and for any of the last ρ − 1 power series, the

valuation of the coefficient is at least n − 1 + v − 2⌊logp n⌋, where v is a (possibly

negative) constant.

Proof. This is a corollary of Lemma 6.5.9.

The main advantage of this method is that for φf we need only to compute the

map ψ defined in (6.4.2); it is this fact that allows to us to mainly work in N and

only translate back to the image of the residue disk under φ when needed.

103



Chapter 7

Construction of the line bundle

We now focus on describing how to explicitly construct the nontrivial Gm-torsor T

introduced in section 7.1.17 and give a formula for the trivializing section j̃b : U → T

in (8.3.10). Moreover, in section 7.1 we present explicit algorithms for working with

T by using endomorphisms of J . Then we proceed to give a description and explicit

algorithms for defining a parametrization κ : Zr
p → T (Zp)j̃b(P with image exactly

T (Z)j̃b(P in section 7.3. These results will be essential in chapter 8. Recall that p > 2

is henceforth a prime of good reduction. This chapter only contains joint work with

Sachi Hashimoto and Pim Spelier that can be found in the preprint [32].

Remark 7.0.1. To work with divisors on U, X or U×X explicitly, we use equations for

a projective regular model of X. There are multiple ways to do this. On a theoretical

level, a regular model itself is projective over Z because it is a repeated blowup of

the projective closure of its generic fiber. On a practical level, this process could

embed the regular model in a high-dimensional projective space, and it is easier to

work on affine patches. In this case we give divisors on each of the affine patches by

Groebner bases, compatible with the glueing data. For a practical implementation,
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7.1 Construction of T

we recommend this latter method. This is, for example, implemented in Magma [17].

The methods in the rest of the section are agnostic to the exact implementation.

Throughout this section, we assume we can represent effective divisors on the regular

model by a Groebner basis, and we represent general divisors by a difference between

two effective divisors.

Section 7.1

Construction of T

As explained in section 6.6, to construct the torsor T , we need ρ − 1 independent

trace zero endomorphisms (fi)
ρ−1
i=1 : J → J . (In general one only needs n independent

nontrivial trace zero endomorphisms where n is such that r < g+ n, but one expects

to obtain a smaller superset of p-adic points containing X(Z) for higher n. In fact,

if we use n nontrivial independent endomorphisms such that r < g + n − 1, then

we expect to cut out X(Z) exactly unless there is some geometric reason for extra

points.) To work with any endomorphism f : J → J explicitly, we recall some facts

about correspondences, as can be found in [62]. A correspondence on X × X is a

divisor D on X ×X.

Write D =
∑

i niDi as a sum of prime divisors. Denote by πDi
1 : Di → X the

projection onto the first factor of X × X and similarly πDi
2 for projection onto the

second factor. The correspondence D induces an endomorphism of the Jacobian

ξD =
∑

i niπ
Di
2,∗π

Di,∗
1 . In particular, it sends the Jacobian point [x−y] to OX(D|x×X −

D|y×X).

Example 7.1.1. Consider negation −1· : J → J on a hyperelliptic curve of the form

y2 = h(x, z) in weighted projective space. If we give X×X the projective coordinates
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x, y, z, x′, y′, z′, then a correspondence representing −1· is given by the homogeneous

equation y = −y′.

The aim of this section is to describe, given correspondences for all fi, how to

calculate the morphism j̃b : U → T . For this goal, we partially follow [36, Section 7].

In the case whereXQ is a classical modular curve we can construct many trace zero

endomorphisms using the Hecke algebra. See for example the computation leading to

(8.3.8) in section 8.3.

Algorithms

We now focus on the computations for a single trace zero endomorphism f : J → J .

We can compute equations for a correspondence Df,Q ⊂ XQ ×XQ inducing f using

the code of Costa, Mascot, Sijsling, and Voight [26]. The input of that algorithm is

the g×g matrix giving the representation of the morphism f on a basis of differential

forms H0(XQ,Ω
1).

Algorithm 7.1.2 (Compute Aα).

Input: Df,Q ⊂ XQ ×XQ a divisor.

Output: a divisor Aα on Xsm ×X.

1. Spread out Df,Q to D′
f over Xsm×X by clearing denominators of the generators

of the Groebner basis.

2. Set B := D′
f |Xsm×b and C := D′

f |∆Xsm .

3. Set Aα := m
(
D′

f −B ×X +Xsm ×B −Xsm × C
)
, where m is the integer de-

fined in (6.1.5).

4. Return Aα, as a Groebner basis over Z.
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Lemma 7.1.3. The divisor Aα on Xsm ×X given by Algorithm 7.1.2 is the unique

divisor on Xsm ×X with the following properties:

(a) the endomorphism of J induced by the correspondence Aα is m · ◦f ;

(b) OXsm(Aα|U×b) is rigidified with trivializing section 1;

(c) OXsm(Aα|∆) is rigidified, compatible with the previous rigidification;

(d) the degree of Aα restricted to fibers of the first projection is 0.

Proof. By [62, Theorem 3.4.7], any divisor inducing the endomorphism m · ◦f is of

the form mDf + F such that F is a sum of vertical or horizontal divisors, so then

(a) holds. Conditions (b) and (c) force F to be m(−B ×X +Xsm ×B −Xsm × C).

Finally, by [16, Proposition 11.5.2] and the important fact that the trace of f is zero

we have that deg(Aα|P×X) = 0 and (d) holds. So Aα is the desired divisor.

Remark 7.1.4. Conditions (b) and (d) are defined the other way from the order cho-

sen in Edixhoven–Lido, in order to agree with the convention in [26]. (That is, in

Edixhoven–Lido, they require that the fibers of the second projection are degree 0.)

This divisor Aα determines a line bundle Lα = OXsm×X(Aα) on X
sm×X, rigidified

on Xsm × b, of degree 0 on the fibers of the first projection, and such that ∆∗Lα is

trivial. This induces the endomorphism m · ◦f by

[x− y] 7→ (Lα)x×X ⊗ (Lα)
−1
y×X . (7.1.5)

Corollary 7.1.6. Let c := [(Lα,Q)b×X ] ∈ J(Q) = J(Z). Let α = m · ◦ trc ◦f be the

morphism α : J → J0. Then j∗b (id, α)
∗M× is trivial over U .
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Proof. This follows directly from [36, Proposition 7.2]

The rest of this section will be dedicated to computing α, and computing the

trivialization of j∗b (id, α)
∗M×.

Algorithm 7.1.7 (Compute c).

Input: equations for a correspondence Aα output by Algorithm 7.1.2, inducing the

morphism m · ◦f : J → J .

Output: a divisor representing c = [(Lα)b×X ] ∈ J(Q) = J(Z).

1. Set Af := Aα/m (recall that Aα was defined as m times a different correspon-

dence, so this is well-defined).

2. Compute the generic fiber Af,Q of Af .

3. Compute equations for the divisor Af,Q|b×X by specializing the equations of Af,Q

to b in the first copy of C.

4. Return a Groebner basis for Af,Q|b×X over Q.

Algorithm 7.1.8 (Compute f∗).

Input: a morphism of projective schemes f : X → Y given as a graded ring morphism

f ∗ : S → R, where X = ProjR and Y = ProjS; an irreducible subvariety Z of X

given by a Groebner basis for its defining ideal J in R.

Output: the pushforward f∗([Z]), given by a Groebner basis.

1. Let B be a set of generators of S.

2. Set I ⊂ S⊗R to be the ideal generated by {b⊗1−1⊗ f ∗(b) | b ∈ B} and 1⊗J .
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3. Compute a Groebner basis B for I with respect to the lexicographical ordering

on S ⊗R.

4. Set K := I ∩ S with Groebner basis B ∩ S.

5. Compute the degree d := deg (f |Z : ProjR/J → ProjS/K).

6. Return a Groebner basis for Kd.

Proof. By construction, K is the defining ideal for the image of Z. The pushforward

of Z is then exactly (deg f |Z) · [im f |Z ].

Remark 7.1.9. In Step 5, we need to compute the degree of a morphism between

projective schemes. There are algorithms to compute the degree of a rational map

between two projective schemes. See for example [65] for a discussion on an imple-

mentation in Macaulay2.

Algorithm 7.1.10 (Apply f).

Input: a ring S and two effective divisors D+ and D− on Xsm
S of the same degree;

the correspondence Aα from Algorithm 7.1.2 inducing the morphism m · f : J → J .

Output: the Jacobian point m · f([D+ −D−]) ∈ J(S).

1. For D ∈ {D+, D−} do:

(i) Compute a Groebner basis for Aα|D×X as a divisor on D ×X.

(ii) Write D =
∑

i niDi as a sum of irreducible components using primary

decomposition.

(iii) Compute the Groebner basis for the pushforward E(Di) := nif∗(Di) on X

using Algorithm 7.1.8 for every Di.
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(iv) Set E(D) :=
∑

iE(Di).

2. Return E(D+)− E(D−).

Remark 7.1.11. In the case where one can write [D+ −D−] as a sum
[∑k

i=1 niPi

]
of

S-points, one can use the isomorphism Pi × X ∼= X to simply compute Aα|Pi×X on

X and take the linear combination
[∑k

i=1 niAα|Pi×X

]
.

Finally, we discuss the section j̃b : U → T lying above the Abel–Jacobi map

jb : U → J with base point b. Let z̄ ∈ X(Fp). Since the pullback j∗bT is triv-

ial, there is a morphism j̃b : U → T embedding each residue disk U(Zp)z into the

(g + ρ − 1)-dimensional residue disk T (Zp)j̃b(z), where z ∈ U(Zp). To compute this

map, we follow [36, section 7]. Let n be the product of all primes of bad reduction.

We first need to compute the numbers Wq and Vq mentioned in [36, Proposition 7.8]

for q | n. These numbers have an involved definition in general. Nevertheless, they

can be explicitly computed in our case, and we explain their meaning below.

By Lemma 7.1.3 the line bundles ∆∗(Lα) and (id, b)∗(Lα) are trivial with trivi-

alizing sections ℓ = 1. Then Wq is defined as the valuation of this section ℓ on UFq .

In our case, these are always 0. It remains to compute Vq. We recall the definition.

Note that Lα has degree 0 on the fibers of the projection U ×X → U , but it might

not have multidegree 0.

Definition 7.1.12. We define V to be the unique vertical divisor on U ×X having

support disjoint from U × b such that Lα(V ) has multidegree 0 on all fibers of the

projection. Write VFq as a sum of irreducible components of UFq ×XFq , i.e., as a linear

combination of UFq × YFq where YFq is an irreducible component of XFq . For q | n

define Vq ∈ Z to be the coefficient of the component (UFq × UFq) in VFq .
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Lemma 7.1.13. The number Vq is equal to the intersection number −((z − b) ·

Aα|z×X)q over Zq for any z ∈ U(Zq).

Proof. Since Aα + V has multidegree 0 on all fibers of the projection, we have that

((z − b) · (Aα + V )|z×X)q = 0. It remains to show that ((z − b) · V |z×X)q = Vq. This

follows from Definition 7.1.12 and the fact that V has support disjoint from U×b.

To compute these numbers, we give the following algorithm.

Algorithm 7.1.14 (Calculate Vq).

Input: the curve X, a bad prime q dividing n, the open set U such that U(Fq) ̸= ∅,

and the divisor Aα on X ×X.

Output: the integer Vq.

1. Pick a point Q ∈ U(Fq).

2. Compute Aα|Q×X .

3. Compute the multidegree of Aα|Q×X .

4. Compute the multidegree of the irreducible components of XFq .

5. Compute the unique linear combination D ⊂ XFq of these irreducible compo-

nents such that D does not meet b and such that Aα|Q×X +D has multidegree

0 at the fiber over q.

6. Set Vq to be the coefficient of the irreducible component containing UFq in D.

7. Return Vq.

Remark 7.1.15. If U(Fq) is empty for some prime q, we can discard U . Integer points

reduce to smooth points, so U(Z) = ∅ in this case.
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Remark 7.1.16. These local heights can also be computed using harmonic analysis on

the dual graph, see [15, section 12]. Even though both the geometric method and the

harmonic method can be realized as combinatorics on the dual graph, it is not clear

how to compare the two computations of local heights.

Let R be a ring and z ∈ U(R). By [36, Proposition 7.5] we have

Tf (jb(z)) = M×(jb(z), α(jb(z))) = z∗(z, id)∗(Lα)
× ⊗ b∗(z, id)∗(Lα)

×,−1

= (Lα)
×(z, z)⊗ (Lα)

×(z, b)−1 = (Lα)
×(z, z).

We apply [36, Proposition 7.8] to give a formula for j̃b(z) when R ⊂ Zp. We have

that

j̃b(z) =
∏
q|n

q−Vq(z∗1)⊗ (b∗1)−1 = (z − b)∗
∏
q|n

q−Vq ∈ (z − b)∗OX(Aα|z×X) (7.1.17)

is a trivializing section over the curve. The image in N is given by

ψ(j̃b(z)) = hp(z − b, Aα|z×X)−
∑
q|n

Vq log q. (7.1.18)

Corollary 7.1.19. The function Ψ ◦ j̃b : U(Zp) → N is given by

z 7→ ([z − b], [Aα|z×X ], hp(z − b, Aα|z×X)−
∑
q|n

Vq log q).
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Section 7.2

Embedding the curve

We now describe how to compute the embedding of the curve into the torsor through

the evaluation of the trivializing section j̃b on a residue disk of the point P ∈ U(Fp).

Recall the pseudoparametrization φ : T (Zp)j̃b(P ) → Zg
p ⊕ Qρ−1

p from Definition 6.6.1.

Let Zp → U(Zp)P be a parametrization of the residue disk. Define the map λ : Zp →

T (Zp)j̃b(P ) to be the composite of this parametrization Zp → U(Zp)P and j̃b. In this

section, we show how to apply the following proposition.

Proposition 7.2.1. The map φ ◦ λ : Zp → Zg
p × Qρ−1

p is given by convergent power

series. Let ν be a coordinate for Zp. For any of the first g power series, the valuation

of the coefficient of νn is at least n − 1 − vp(n), and for any of the last ρ − 1 power

series, the valuation of the coefficient is at least n − 1 + v − 2⌊logp n⌋, where v is a

(possibly negative) constant.

The image im(φ ◦ λ) inside imφ is cut out by equations g1 = · · · = gg+ρ−2 = 0

where g1, . . . , gg+ρ−2 ∈ Zp⟨x1, . . . , xg+ρ−1⟩ are integral convergent power series.

Proof. This follows from Corollary 6.6.2 and [18, Corollary 2, III.4.5].

For actual calculations with the convergent power series φ ◦ λ, we need to lower

bound the valuation of the coefficients.

Proposition 7.2.2. Let ν be a coordinate for Zp. Consider the g + ρ− 1 convergent

power series given by φ ◦λ : Zp → Zg
p×Qρ−1

p . For any of the first g convergent power

series, the valuation of the coefficient of νn is at least n− 1− vp(n). For any of the

last ρ−1 power series, the valuation of the coefficient is at least n−1−2⌊logp n⌋+v,

where v is an explicit (possibly negative) constant.
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Proof. The result about the coefficients of the first g power series follows from Corol-

lary 6.6.2.

Let Z1, . . . Zρ−1 be a basis for ker(NS(J) → NS(X)). Then [11, Lemma 4.5] states

that the Nékovar height hNek
i,p : X → Qp corresponding to Zi is analytic on residue

disks. Furthermore, they show that the valuation of the coefficient of νn is at least

n − 1 − 2⌊logp n⌋ + v, where v = min(ordp(γFil), c2 + c3) and γFil, c2, and c3 are

explicit constants defined in [11, Section 4], depending on Zi among other things.

(The valuation of νn stated in [11, Lemma 4.5] differs by 1 from the value given here,

because our coordinates differ from theirs by a factor of p.)

In Section 8.2 we go more into detail about this Nékovar height. In particular,

in Theorem 8.2.10 together with Proposition 8.2.11 we show that hNek
p (z) and hp(z−

b, Aα|z×X) differ by a factor of −m. The result follows from Corollary 7.1.19.

Remark 7.2.3. In the example of Section 8.3, we calculate that the constant v is 0 for

the residue disk of the curve we consider there. We suspect that this constant can

often be taken to be 0, at least in the cases p > 2g − 1 and p ∤ #J(Fp).

We first present a general algorithm to compute the trivializing section φ ◦λ. For

example, if p > 3 and v = 0, to compute j̃b(Pν) in N modulo p, it suffices to compute

j̃b on two values, for example j̃b(P0) and j̃b(P1). Since the embedding must be linear

in ν on U(Z/p2Z)P , we can interpolate between these values to determine the map.

In general, to compute φ ◦ λ to finite precision, it is enough to determine the map on

Z/pkZ-points for some large enough k. We give an algorithm to compute j̃b(P ) when

P is a Z/pkZ-point.

Algorithm 7.2.4 (The trivializing section).
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Input: A point Pν ∈ U(Z/pkZ)P .

Output: the value φ ◦ λ(Pν) to a finite precision.

1. Calculate the Coleman integral log(Pν − b).

2. Compute Aαi
|Pν×X for each i = 1, . . . , (ρ− 1) using Algorithm 7.1.10.

3. Calculate all hp(Pν − b, Aαi
|Pν×X).

4. Compute cU :=
∑

q|n Vq log q using Algorithm 7.1.14, where n is the product of

the primes of bad reduction for X.

5. Return

(φ◦λ)(ν) = (log(Pν−P0), hp(Pν−b, Aα1|Pν×X), . . . , hp(Pν−b, Aαρ−1|Pν×X))+cU .

For the rest of this section, we describe a practical algorithm to do Step (3) of

Algorithm 7.2.4 in the case where X is a hyperelliptic curve of the form y2 = H(x).

For hyperelliptic curves where H has odd degree, there is an algorithm to compute the

local Coleman–Gross height at p of two disjoint divisors given as a sum of points [6,

Algorithm 5.7]. Forthcoming work of Gajović extends this algorithm to even degree

models.

For any i = 1, . . . , (ρ − 1) since the divisor Aαi
|Pν×X on XQp may not split as

a sum of points, we instead consider multiples of this divisor nAαi
|Pν×X for n ∈ N.

We can hope some large enough multiple splits as a sum of points. Therefore, we

must explicitly describe arithmetic in the Jacobian. For hyperelliptic curves, this pro-

cess can be done via Cantor’s algorithm [19]. The main idea is to use the Mumford

representations of divisors. We use the implementation of Cantor’s algorithm done
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by Sutherland in [66, section 3]. The only extra step is to keep track of the func-

tion that realizes the linear equivalence with a Mumford representation of the sum.

Even though Sutherland works with even degree models for hyperelliptic curves, the

algorithms still apply to our odd degree model hyperelliptic curves (see [66, p. 433]).

Remark 7.2.5. In practice, we represent divisors with ideals of polynomial rings. We

can translate from a Groebner basis of an ideal to a Mumford representation in the

following way. Let Y be a hyperelliptic curve over a field k given by y2 = H(x). Let

π : Y → P1 be the degree two morphism forgetting y. Let D be an effective divisor on

the affine chart k[x, y]/(y2 −H(x)) of Y , given by a Groebner basis. We assume that

D and ι(D) are disjoint. Then we can find a Mumford representation for D by simply

taking a Groebner basis with respect to the lexicographical ordering y ≤ x. If D and

ιD are not disjoint, one can explicitly compute an effective divisor E on P1 such that

D − π∗E is disjoint from ι(D − π∗E), and hence find a Mumford representation for

D − π∗E.

We can now give a practical algorithm to compute the local heights at p in Step

(3) of Algorithm 7.2.4. When X is a hyperelliptic curve of the form y2 = H(x), given

Pν ∈ U(Z/pkZ) we can apply Algorithm 7.1.10 to obtain Aαi
|Pν×X as a divisor on

XQp .

Algorithm 7.2.6 (Local heights for the trivializing section on a hyperelliptic curve).

Input: A point Pν ∈ U(Z/pkZ)P on a hyperelliptic curve Y : y2 = H(x) and the

Mumford representation of Aαi
|Pν×Y as a divisor on Y .

Output: the value hp(Pν − b, Aαi
|Pν×Y ).

1. Set n := 1.
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2. Use Cantor’s Algorithm to compute a Mumford representation (un, vn) and a

rational function sn such that Div(un, vn) + Div sn = nAαi
|Pν×Y [19].

3. Check if un factors completely over Qp into linear factors.

4. If yes, set xi to be the roots of un for i = 1, . . . , deg(un). If no, increase n by 1

and go back to Step (2).

5. Set yi := vn(xi).

6. Set Qi := (xi, yi) ∈ Y (Qp).

7. Compute hp(Pν − b,
∑deg(un)

i=1 Qi − deg(un)∞) using [6, Algorithm 5.7].

8. Return (1/n)(hp(Pν − b,
∑deg(un)

i=1 Qi − deg(un)∞) + log(sn(Pν − b))).

Algorithm 7.2.6 does not always terminate; we cannot guarantee that eventually

the divisor nAαi
|Pν×Y splits completely into a sum of points over Qp. In theory, we

can split any divisor as a sum of points over some finite extension of Qp. However,

working with these field extensions of Qp is often currently not possible in practice.

Remark 7.2.7. Algorithms 7.2.4 and 7.2.6 take in a point Pν of precision k, but

their output can be of smaller precision. This depends on the precision loss in the

computation of the p-adic height; see [6, section 6.2].

Section 7.3

Integer points of the torsor

Next we discuss the integer points of the torsor T . We give an algorithm to construct

a map κ : Zr
p → T (Zp)j̃b(P ) with image exactly T (Z)j̃b(P ).
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In practice, to give an upper bound on #U(Z)P , we only need to compute the

image of the map κ in T (Z/p2Z)j̃b(P ). This is because after composing with the

pseudoparametrization φ from Definition 6.6.1 the map κ is given by convergent

power series. In fact, in this section we will show that by virtue of our choice of

pseudoparametrization, they are given by g linear polynomials and ρ − 1 quadratic

polynomials.

Note that if the residue disk T (Z)j̃b(P ) is empty, then its p-adic closure is also

empty, and therefore we do not need to consider P . If the disk is not empty, then we

can find t̃ ∈ T (Z)j̃b(P ) by arithmetic in the Jacobian. It is enough to consider if the

corresponding residue disk J(Z)jb(P ) is empty. This is an instance of the Mordell–Weil

sieve at p.

As an intermediate step, we need to compute integer points Qij on N , the trivial

biextension, that are the image under Ψ (defined in Definition 6.4.3) of generating

sections on certain fibers of M×(Z).

We construct integer points on N that are the image of generating sections of

residue disks of M×(Z) following the method in Example 6.3.10.

Algorithm 7.3.1 (Compute the Qij).

Input: G1, . . . , Gr′ a generating set of the Mordell–Weil group of J , a trace zero

endomorphism f : J → J .

Output: Integer points Qij on the trivial biextension N which are the image of the

generating section of M×(Gi, f(Gj))(Z) and Qi0 that are the image of the generating

section of M×(Gi, c)(Z) for 1 ≤ i, j ≤ r′.

1. Compute E1, . . . Er′ representing divisors of G1, . . . , Gr′.

2. For each Gi, use Algorithm 7.1.10 to compute representing divisors D1, . . . , Dr′
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of f(Gi).

3. Use Algorithm 7.1.7 to compute a divisor D0 whose class is the point c ∈ J(Z).

4. Compute the local height hp(Ei, Dj) and hp(Ei, D0) for 1 ≤ i, j ≤ r′.

5. Using [71, section 2], compute the height hℓ(Ei, Dj) at ℓ ̸= p and hℓ(Ei, D0) at

ℓ ̸= p for 1 ≤ i, j ≤ r′.

6. Return

Qij := (Gi, f(Gj),
∑

ℓ prime

hℓ(Ei, Dj))

and

Qi0 := (Gi, c,
∑

ℓ prime

hℓ(Ei, D0))

for 1 ≤ i, j ≤ r′.

Let G1, . . . , Gr′ be a generating set for the full Mordell–Weil group, with r′ ≥ r.

Let G̃i be a basis for the kernel of reduction J(Z) → J(Fp) for i = 1, . . . , r. (Note

that the reduction map is injective when restricted to the torsion of J(Z), so the

kernel of reduction is a free Z-module of rank r.) Write

G̃i =
r′∑
j=1

eijGj

for some eij ∈ Z. Let G̃t denote the projection of t̃ ∈ T (Z)j̃b(P ) to Jjb(P ). Write

G̃t =
r′∑
i=1

e0iGi
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for some e0i ∈ Z. Using the biextension group laws and the points Qij we construct

a series of points in M×(Z) living over certain points in J × J that are the image of

generating sections of the corresponding residue disks in M×(Z).

A formula for the points Pij over (G̃i, f(mG̃j)) is

Pij :=
r′∑

1
k=1

eik ·1

(
r′∑

2
ℓ=1

m ·2 ejℓ ·2 Qkℓ

)
. (7.3.2)

Here, ·i and
∑

i for i = 1, 2 denote the biextension group laws (6.3.9) and (6.3.8).

A Z-point t̃ living over (G̃t,mα(G̃t)) can be constructed as

t̃ :=
r′∑

1
k=1

e0k ·1

(
m ·2 Qk0 +2

r′∑
2

ℓ=1

m ·2 e0ℓ ·2 Qkℓ

)
. (7.3.3)

Next Rit̃ live over (G̃i,mα(G̃t)) and hence

Rit̃ :=
r′∑

1
k=1

eik ·1

(
m ·2 Qk0 +2

r′∑
2

ℓ=1

m ·2 e0ℓ ·2 Qkℓ

)
. (7.3.4)

Finally, St̃j live over (G̃t, f(mG̃j)) and so

St̃j :=
r′∑

1
k=1

e0k ·1

(
r′∑

2
ℓ=1

m ·2 ejℓ ·2 Qkℓ

)
. (7.3.5)

Remark 7.3.6. In M×(Z), these points are all unique up to sign. Since we are record-

ing the image in N , this sign does not matter.

For n = (n1, . . . , nr) ∈ Zr we can now construct the points At̃(n), Bt̃(n), Ct̃(n),

and Dt̃(n) in T (Z) given by [36, (4.2)-(4.4)]. The key property of this construction

is that Dt̃(n) lies above the point j̃b(P ) ∈ J(Fp). Furthermore, by [36, (4.6)-(4.9)],
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we have that Dt̃((p − 1)n) is in the residue disk T (Z)j̃b(P ), allowing us to explicitly

construct the map

κZ : Zr → T (Z)j̃b(P ), (n1, . . . , nr) 7→ Dt̃((p− 1)n1, . . . , (p− 1)nr), (7.3.7)

Finally, by [36, Theorem 4.10], the map κZ extends continuously to a map

κ : Zr
p → T (Zp)j̃b(P ) (7.3.8)

with image T (Z)j̃b(P ).

Recall the pseudoparametrisation φ : T (Zp)j̃b(P ) → Zg+ρ−1
p from Definition 6.6.1.

Proposition 7.3.9. The map φ ◦ κ : Zr
p → Zg+ρ−1

p is given by g linear polynomials

and ρ− 1 quadratic polynomials.

Proof. It is enough to show this for κZ, since polynomials are continuous. Note that

φ ◦ κZ : Zr = J(Z)j̃b(P ) is given by

D 7→ log(D −D0),

on the first g components, for a fixed D0 ∈ J(Z)jb(P ). Since log is a group homomor-

phism, it follows the first g polynomials are linear as desired.

Now we fix one of the ρ−1 trace zero endomorphisms f : J → J . Let πf : Zg+ρ−1
p →

Zp be the projection onto the coefficient corresponding to f . Consider at the map

τ := πf ◦ φ ◦ κ. We write F for the linear map

Zr ∼= J(Z)jb(P )

f−→ J(Z)f(jb(P ))
∼= Zr.
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Then by formulas [36, (4.2)-(4.4)] we have that τ(n1, . . . , nr) is a sum of a constant

term, a linear function in the n, a linear function in Fn and a bilinear form evaluated

in (n, Fn). Since F is linear, we see that, in total, this gives a quadratic function in

n.
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Chapter 8

Main results

We are now ready to present the main algorithm for explicit Geometric quadratic

Chabauty and a comparison theorem with geometric Chabauty. The main algorithm

is Algorithm 8.1.1 and the main theorem is Theorem 8.2.5. We then apply the

geometric quadratic Chabauty method to the (classical) modular curve X0(67)
+ as

an example. This is joint work with Sachi Hashimoto and Pim Spelier from [32].

Section 8.1

The geometric quadratic Chabauty algorithm

In this section, we present the main algorithm of this paper for doing geometric

quadratic Chabauty. This algorithm ties together the results of the previous sections.

Algorithm 8.1.1 (Geometric quadratic Chabauty in a single disk).

Input:

• XQ/Q a smooth, projective, geometrically irreducible curve over Q such that

XQ(Q) ̸= ∅ with a regular model X of genus g and Mordell–Weil rank r, and
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8.1 The geometric quadratic Chabauty algorithm

with Jacobian of Néron–Severi rank ρ > 1, such that r < g + ρ− 1;

• ρ − 1 nontrivial independent trace 0 endomorphisms represented by (g × g)-

matrices giving the action on the sheaf of differentials with respect to a fixed

basis;

• an open set U ⊂ Xsm containing the smooth points of one geometrically irre-

ducible component of XFq for all primes q;

• a prime p > 2 of good reduction for X;

• a precision k ∈ N;

• a base point b ∈ X(Z);

• a point P ∈ U(Fp);

• a generating set G1, . . . , Gr′ of the Mordell–Weil group of J .

Output: g+ ρ− 2 integral convergent power series in Zp⟨z1, . . . , zr⟩ up to precision k,

defining j̃b(U(Zp)P ) ∩ T (Z) inside T (Z).

For each of the given trace 0 endomorphisms f do the following.

1. Compute the correspondence Aα that induces the endomorphism m · ◦f : J → J

as given in Lemma 7.1.3.

2. Find the divisor representing c = [(Lα)b×X ] ∈ J(Z) using Algorithm 7.1.7.

3. Choose a local parameter ν to parameterize (Zp)P as ν 7→ Pν. By Proposi-

tion 7.2.1 the map ν 7→ φ ◦ λ(Pν) is, modulo pk, given by a polynomial with

bounded degree. By calculating enough values, interpolate to find the polynomial
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expression. In particular, when v = 0 and p > 3, for k = 1, the degree bound is

1. In this case, compute φ ◦ λ(P0), φ ◦ λ(P1) and interpolate the resulting line.

4. With the generating set G1, . . . , Gr′, use Algorithm 7.3.1 to compute integer

points Qij, Qi0 ∈ N up to precision k that are the images of the generating

sections of M×(Gi, f(Gj))(Z) and M×(Gi, c)(Z) for 1 ≤ i, j ≤ r′.

5. Using the elements Qij, find the map κZ : Zr → T (Z)j̃b(P̄ ) as in (7.3.7) and

extend it to the map κ : Zr
p → T (Zp)j̃b(P̄ ).

6. Compose with the pseudoparametrization φ to compute the linear and quadratic

polynomials describing φ ◦ κ : Zr
p → Zg+ρ−1

p , as guaranteed by Proposition 7.3.9,

up to precision k.

7. Use Lagrangian interpolation to compute the power series φ ◦ λ up to precision

k.

8. Use Hensel lifting to compute the power series f1, . . . , fg+ρ−2 defined in Propo-

sition 7.2.1 that cut out imφ ◦ λ, up to precision k.

9. Return gi := fi ◦ (φ ◦ κ) for i = 1, . . . , g + ρ− 2.

By iterating this over all simple opens Ui such that (Ui(Z))i∈I covers X(Z) (as in

section 6.1), and also iterating over all Fp-points of Ui, we obtain multivariate power

series up to precision k cutting out X(Zp)Geo.

Remark 8.1.2. By [36, section 9.2], the power series in the output of Algorithm 8.1.1

have at most finitely many zeros in Zp. In practice, one can solve these power series

up to enough precision by using a multivariate Hensel’s lemma [48, Theorem 25].
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This assumes that the Jacobian matrix of the sequence of power series is invertible

over Qp. We expect this to always happen unless there is a geometric obstruction.

Often solving these power series modulo p is enough to determine X(Zp)Geo. See

for example [36, Theorem 4.12], which we use in section 8.3. Even if computations

modulo p are not enough, one can increase the precision by considering the residue

disks U(Zp)P , where P ∈ U(Z/pkZ) for some integer k. An example of the geometric

Chabauty method with higher precision is given in Remark 8.3.19.

Remark 8.1.3. In practice, to run Algorithm 8.1.1 we need to be able to compute

Coleman–Gross heights on the curve X. Currently, this has only been made algorith-

mic for hyperelliptic curves.

Section 8.2

The comparison theorem

In this section we give a comparison theorem between the geometric method and the

cohomological quadratic Chabauty of [9, 10, 3, 11]. In Theorem 8.2.5, we show that

the geometric method produces a refined set of points, as is the case for classical

Chabauty–Coleman [41].

For this section we assume that p is a prime of good reduction, that r = g,

and further, that J(Z) has finite index in J(Zp). These assumptions are needed

for constructing the cohomological quadratic Chabauty set. We do not require a

semistable model for X/Qq, q|n as is sometimes assumed; a semistable model can

make explicit calculations of heights away from p easier, see [15] or [11, section 3.1].

By [14, Lemma 6.1.1] the local heights away from p factor through the component

set of the minimal regular model.
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Let Z1, . . . , Zρ−1 be a basis for ker(NS(J) → NS(X)). In the cohomological

method, from the transpose Z⊤
i of such a correspondence1 we are able to construct a

quadratic Chabauty function σi : X(Qp) → Qp and a finite subset Ωi ⊂ Qp described

explicitly in terms of local heights at primes of bad reduction such that σi(z) ∈ Ωi

for all z ∈ X(Q). This finite subset Ωi consists of one constant cU,i for every simple

open U .

We describe the construction of σi and the set Ωi in more detail after we present

the main theorem. The divisor Zi is the correspondence of a trace zero endomorphism

fi : J → J of the Jacobian. In the geometric method, we work with the endomorphism

αi := m · ◦ trci ◦fi. This multiplication with m will result in all the heights in the

trivial biextension N to be a factor m larger than in the cohomological case.

Definition 8.2.1. Define X(Qp)Coh :=
⋃

U{x ∈ X(Qp) | σi(x) = cU,i, for i =

1, . . . , ρ− 1} where the union is over all simple opens U .

Remark 8.2.2. As far as we know, the existing literature does not explicitly define

the quadratic Chabauty set in the case of multiple endomorphisms. One can see

Definition 8.2.1 as a special case of the finite set implicitly defined in [14, Theorem A],

for the quotient of the fundamental group that is an extension of the abelianization

by Qp(1)
ρ−1.

The alternative definition is
⋂

i

⋃
U{x ∈ X(Qp) | σi(x) = cU,i}. Here the union

and the intersection have been switched, and hence the resulting set can be bigger.

The difference between the two sets consists exactly of points x ∈ X(Qp) such that

σi(x) ∈ Ωi for every i, but such that there is no U with σi(x) = cU,i for every i. In

1Due to a difference of conventions of rigidifications for line bundles on X × X, we have to
take the transpose of Zi for the methods to align perfectly. The transpose Z⊤

i induces the same
endomorphism of the Jacobian.
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particular, the points in the difference do not lie in any of the simple opens U , and

hence are not rational points.

Recall the definition of X(Zp)Geo from Definition 6.1.3. Given a covering of X by

simple opens U we have that

X(Zp)Geo :=
⋃
U

j̃b
∗
(j̃b(U(Zp)) ∩ T (Z)) ⊂

⋃
U

U(Zp) = X(Zp).

The following definitions give terminology for two of the cases in which X(Qp)Coh

is strictly bigger than X(Zp)Geo.

Definition 8.2.3. We say that the Mordell–Weil group is of good reduction (modulo

p) if the map J(Z)0/pJ(Z)0 → J(Z/p2Z)0 is injective. Otherwise, we say that it is of

bad reduction.

The Mordell–Weil group being of good reduction is equivalent to the map J(Z)0 →

J(Zp)0 being an isomorphism. On the level of abstract groups, this map is always an

embedding Zg
p → Zg

p with image of index some power of p. Another equivalent way

of stating this is that the p-saturation of J(Z)0 in J(Zp)0

{x ∈ J(Zp)0 | ∃k, pkx ∈ J(Z)0}

is always equal to J(Zp)0, and the Mordell–Weil group is of bad reduction if and only

if this p-saturation is bigger than J(Z)0.

Definition 8.2.4. For Q ∈ X(Fp), if jb(Q) is not in the image of the reduction

map J(Z) → J(Fp), then we say Q fails the Mordell–Weil sieve (at p). In this case,

the residue disk X(Zp)Q cannot contain a rational point. Otherwise, Q passes the
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Mordell–Weil sieve (at p).

Our main theorem is the following comparison theorem.

Theorem 8.2.5. There is an inclusion X(Q) ⊆ X(Zp)Geo ⊆ X(Qp)Coh. For P ∈

X(Qp)Coh we have P ̸∈ X(Zp)Geo if and only if one of the following conditions holds:

(a) P fails the Mordell–Weil sieve at p;

(b) the Mordell–Weil group is of bad reduction at p and jb(P ) does not lie in the

p-adic closure of the Mordell–Weil group, but only in its p-saturation.

Remark 8.2.6. In [41], an analogous theorem is given for the comparison between the

classical Chabauty–Coleman method, as in [24, 8], and the geometric linear Chabauty,

as developed in [63] and [41]. The comparison theorem [41, Theorem 4.1] shows that

the set of candidates found by the classical Chabauty–Coleman method contains the

set found by geometric linear Chabauty method. Furthermore, the two sets differ by

conditions analogous to (a) and (b).

Let 1 ≤ i ≤ ρ(J) − 1. We briefly recall the constructions of σi and Ωi from [11].

For more details, the reader can also consult [9, 3]. The cohomological method for

quadratic Chabauty uses Nekovář’s theory [55] of p-adic heights of certain Galois

representations to construct a global height hNek
i : X(Q) → Qp by attaching a family

of Galois representations to X(Q) and X(Qp). The Galois representation depends

on the choice of base point b as well as the correspondence Zi. We suppress this

dependence on b in our notation. The global height also depends on a choice of

splitting of the Hodge filtration and idèle class character, which we choose to be

compatible with the choices made to construct the Coleman–Gross height h. In

particular we choose the cyclotomic character. This global height hNek
i factors through
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hNek : J(Q)× J(Q) → Qp [11, section 2.3]. We can thus extend hNek on J(Q)× J(Q)

to a bilinear function on J(Qp)× J(Qp) → Qp and evaluate it on elements of X(Qp).

This global height decomposes as a sum of local heights over finite places

hNek
i =

∑
v

hNek
i,v

where hNek
i,v : X(Qv) → Qp. Define the quadratic Chabauty function

σi(z) := hNek
i (z)− hNek

i,p (z)

for z ∈ X(Qp), recalling that the right hand side implicitly depends on Zi. Then,

for any z ∈ X(Q), using the decomposition above we can write hNek(z) = hNek
p (z) +∑

q ̸=p h
Nek
q (z). The set Ωi ⊂ Qp is defined by the local heights in the following way.

Let

Ωi,q := {hNek
i,q (z) | z ∈ X(Qq)}.

If XFq is geometrically irreducible, then Ωi,q = {0}. We can therefore define the finite

set

Ωi := {
∑
q

wq | wq ∈ Ωi,q}, (8.2.7)

Hence, when z ∈ X(Q), we have σi(z) ∈ Ωi and so X(Qp)Coh ⊇ X(Q).

Remark 8.2.8. The function σi(z) is locally analytic [11, pp.6-10]. If X has sufficiently

many rational points, then one can explicitly express the function σi(z) as a power

series in every residue disk, and for each c ∈ Ωi and each residue disk of X(Qp) find
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the roots of σi(z)− c to explicitly solve for elements of X(Qp)Coh.

The following theorem relates the local height of the Galois representation asso-

ciated to a point P ∈ X(Qp) to a pairing with a divisor that is studied in [30].

Definition 8.2.9. Let z ̸= b be a point in X(Qp). Define DZ⊤
i
(z, b) to be the degree

zero divisor on X given by DZ⊤
i
(z, b) := Zi|∆ − Zi|X×b − Zi|z×X .

Theorem 8.2.10. [9, Theorem 6.3] Let q be a prime and let z ̸= b be a point in

X(Qp). We have the equality of local heights hNek
i,q (z) = hq(z − b,DZ⊤

i
(z, b)) for

z ∈ X(Qq) and moreover hNek
i (z) = h(z − b,DZ⊤

i
(z, b)) where h is the Coleman–

Gross height.

Proposition 8.2.11. Let z ∈ X(Zp) be such that z ̸= b. We have −mDZ⊤
i
(z, b) =

Aαi
|z×X and −m[DZ⊤

i
(z, b)] = [αi(z − b)].

Proof. Write B = Zi|X×b and C = Zi|∆. Then

DZ⊤
i
(z, b) = C −B − Zi|z×X .

Define A = Zi − B × X + X × B − X × C. Then we see A|z×X = Zi|z×X + B −

C = −DZ⊤
i
(z, b). Then by Lemma 7.1.3, mA is equal to Aαi

and the proposition

follows.

Definition 8.2.12. Define ρN : N → Qp by (D1, D2, x) 7→ hNek(D1, D2)− x.

Note that ρN does not depend on Zi.

Lemma 8.2.13. The function ρN vanishes on the image Ψ(M(Z)) in N , and in

particular, on Ψ(Ti(Z)).
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Proof. This follows from Proposition 6.4.6.

In order to characterise the difference between X(Qp)Geo and X(Qp)Coh, we will

use the following lemma.

Lemma 8.2.14. The difference Z(ρN )\Ψ(M(Z)) consists of all the points (D,E, x)

with D,E ∈ J(Zp) such that

(a) D or E fail the Mordell–Weil sieve, or;

(b) the Mordell–Weil group is of bad reduction, and at least one of D or E does

not lie in the p-adic closure J(Z) of the Mordell–Weil group, and only lies in

its p-saturation.

Proof. Note that Z(ρN ) is in bijection with J(Zp)×J(Zp). In contrast, Ψ(M(Z)) is in

bijection with J(Z)× J(Z). By assumption, J(Z)0 ⊂ J(Zp)0 is a finite index Zp-sub-

module, and therefore has p-saturation J(Zp)0. Hence J(Zp) \ J(Z) consists exactly

of points failing the Mordell–Weil sieve and points that only lie in the p-saturation of

J(Z) and not in J(Z) itself. This can only happen if J(Z)0 is a proper subgroup of

J(Zp)0 ∼= Zg
p. A finite index Zp-submodule G ⊂ Zg

p is a proper subgroup if and only

if after tensoring with Fp the induced map G/pG → Fg
p is not an isomorphism. This

is equivalent to G/pG → Fg
p not being injective. So the second condition can only

happen if the Mordell–Weil group is of bad reduction.

Definition 8.2.15. Let U ⊂ Xsm be a simple open set of Xsm. Define cU,i ∈ Ωi ⊂ Qp

to be
∑

q ̸=p hq(zq − b,DZ⊤
i
(zq, b)) for any zq ∈ U(Zq) with zq ̸= b.

Remark 8.2.16. By Lemma 7.1.13, the previous definition is well defined and −mcU,i

is equal to −
∑

q Vq log q, with Vq as defined in Definition 7.1.12. Here we use the
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local height hq(D,E) is (D + F ) · E · log q where F is the unique vertical divisor

on XZq making D + F have multidegree 0 on XFq . Hence by (7.1.18) we have that

ψ ◦ j̃b : U(Zp) → Qp is given by z 7→ hp(z − b, Aα|z×X) − mcU,i and (Ψ ◦ j̃b)(z) =

(z − b, Aα|z×X , hp(z − b, Aα|z×X)−mcU,i).

Lemma 8.2.17. The function −m(σi(z)−cU,i) is the pullback along Ψ◦j̃b|U : U(Zp) →

N of ρN .

Proof. Let z ∈ U(Zp) ⊂ X(Zp) with z ̸= b. By Theorem 8.2.10 and Proposition 8.2.11

we have that

−mhNek
i,q (z) = −mhq(z − b,DZ⊤

i
(z, b)) = hq(z − b, Aα|z×X).

By [11, p. 12],

hq(z − b, Aα|z×X) = −((z − b) · Aα|z×X)q log q

where the right hand side denotes the intersection number of the divisors over Z(q).

By Lemma 7.1.13, this is equal to Vq log q.

Then

−m(σi(z)− cU,i) = −m(hNek(z)− hNek
p (z)− cU,i)

= h(z − b, Aα|z×X)− hp(z − b, Aα|z×X) +mcU,i.

This is equal to

h(z − b, Aα|z×X)− (hp(z − b, Aα|z×X)−mcU,i) =

ρN ((z − b, Aα|z×X , hp(z − b, Aα|z×X)−mcU,i)) = ρN (j̃b(z)).
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This last equality follows from Corollary 7.1.19.

Proof of Theorem 8.2.5. Let c ∈ Ωi, and consider the function σi − c. By (8.2.7),

Theorem 8.2.10 and Definition 8.2.15 there is a simple open U ⊂ X such that c = cU,i.

Let j̃b,U,i denote the map U → Ti. According to Lemma 8.2.17 we have that

−m(σi − c) : U(Zp) → Qp is the composite

U(Zp)
˜jb,U,i−−−→ Ti(Zp) → M×(Zp)

Ψ−→ N ρN−→ Qp, (8.2.18)

identifying Ti(Zp) as a subset of M×(Zp). Define gU,i := −m(σi − c). Note that the

first three maps in (8.2.18) are injections.

With this formulation we have

X(Qp)Coh =
⋃
U

⋂
i

Z(gU,i).

Similarly, we can write

X(Zp)Geo =
⋃
U

⋂
i

j̃b,U,i
∗
(j̃b,U,i(U(Zp)) ∩ Ti(Z)).

By Lemma 8.2.13, the set Z(gU,i) contains

j̃b,U,i
∗
(j̃b,U,i(U(Zp)) ∩ Ti(Z)).

Therefore, we get the containment X(Zp)Geo ⊆ X(Qp)Coh.

134



8.3 Example: X0(67)
+

The difference X(Qp)Coh \X(Zp)Geo is

⋃
U

⋂
i

Z(gU,i) \ j̃b,U,i
∗
(j̃b,U,i(U(Zp)) ∩ Ti(Z)).

By Lemma 8.2.14 the theorem follows.

Section 8.3

Example: X0(67)
+

We give an example of the implementation on the modular curve X0(67)
+ of the

algorithms presented. The rational points on this curve have already been determined

[2] using quadratic Chabauty and a Mordell–Weil sieve, but we can also use the

methods presented here to show the following proposition about the rational points

of the curve in one residue disk. Magma [17] code that can be used to verify the

computations here can be found in [33]. Let X be a regular model for X0(67)
+ over

the integers given by the homogenization of y2+(x3+x+1)y = x5−x in the weighted

projective plane P2
(1,3,1). Then X(Q) = X(Z) and we show the following.

Theorem 8.3.1. The integer points of X(Z) that do not reduce to (1, 4) ∈ X(F7) are

contained in the set

{
[0,−1, 1], [0, 0, 1], [1, 0, 1], [1,−3, 1], [1,−1, 0], [1, 0, 0],

[4 · 7 +O(72), 6 + 6 · 7 +O(72), 1], [4 · 7 +O(72), 3 · 7 +O(72), 1],

[1 + 2 · 7 +O(72), 5 · 7 +O(72), 1], [1 + 2 · 7 +O(72), 4 +O(72), 1],

[1, 6 + 3 · 7 +O(72), 3 · 7 +O(72)], [1, 4 · 7 +O(72), 4 · 7 +O(72)]
}
.
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Remark 8.3.2. The residue disk above (1, 4) ∈ X(F7) has at least two integer points,

[1,−3, 2] and [1,−10, 2]. Using geometric quadratic Chabauty modulo p2, we cannot

bound the size of this residue disk. After doing the necessary calculations, it turns

out im j̃b(z) = imκ(0, n2). In this case, applying [36, Theorem 4.12], since the ring

Fp[n1, n2]/(g1, g2) ≃ Fp[n2] is not finite, we cannot determine the solutions using

calculations modulo p2.

By increasing precision we are guaranteed a finite set of solutions in this residue

disk. In practice, this requires computing heights of points that lie in residue disks

at infinity which is not possible using current implementations of Coleman–Gross

heights.

We present the computations in a single residue disk over P = (0,−1) ∈ X(F7)

where we show the following.

Proposition 8.3.3. The integer points of X(Z) reducing to (0,−1) ∈ X(F7) are

contained in the set

{(0,−1), (4 · 7 +O(72), 6 +O(72))}.

By iterating the algorithm over the remaining residue disks, one can in principle

determine a finite set of p-adic points containing X(Q).

We first list some facts about this curve that will be useful in our computations.

The curve X is a projective curve of genus 2 with Jacobian J . We recall some details

about X and its Jacobian that are presented in [2, section 6]. The Jacobian J has

Mordell–Weil rank 2 and JQ has Néron–Severi rank 2. In addition, the only prime of

bad reduction of X is 67. At 67, the special fiber is geometrically irreducible: it has

one component with two nodes defined over F672 . Hence, there are only geometrically

irreducible fibers over every prime.
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Remark 8.3.4. For this example curve, all of the fibers are geometrically irreducible,

leading to a simplification in the notation used in the example compared to the

notation in the preceding sections. In general, one needs to consider a distinction

between J and J0, where J0 is the fiberwise connected component of 0 in J . We

also omit the constant m which is the least common multiple of the exponents of all

J/J0(Fp), with p ranging over all primes. Since J = J0, we have m = 1. Let Xsm

denote the open subscheme of X consisting of points at which X is smooth over Z.

Above, we consider the simple open subschemes U of Xsm. In this example, there

is only one simple open to consider: the scheme Xsm obtained by removing the two

Galois conjugate nodes in the fiber over 67. Since X is regular, Xsm(Z) = X(Z).

Let ι be the hyperelliptic involution of X. We list some rational points on the

curve that will be used in our computations:

P := [0,−1, 1], ιP := [0, 0, 1],

Q := [−1, 0, 1], ιQ := [−1, 1, 1],

b := [1, 0, 1], ιb := [1,−3, 1], (8.3.5)

R := [1,−3, 2], ιR := [1,−10, 2],

∞+ := [1, 0, 0], ∞− := [1,−1, 0].

These points turn out to be the only rational points on X, as proven in [2, Theo-

rem 6.3] by a combination of quadratic Chabauty and the Mordell–Weil sieve.

Let p = 7. We first perform some local computations. There are 9 points on

X(Fp). For each Fp-point x of Xsm, we need an element in T (Z)j̃b(x), or equivalently

an element in J(Z)jb(x). Every residue disk of X(Zp) contains an integer point; only
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R and ιR reduce to the same point. Therefore, none of the residue disks J(Z)jb(x) are

empty. So we cannot rule out any residue disks of the torsor immediately; in fact,

this calculation is a Mordell–Weil sieve at p, see [41, section 3.4] for more details.

This example presents the specific case of the residue disk corresponding toX(Z)P ,

where P is the point defined in (8.3.5). Because we can consider residue disks up to

the hyperelliptic involution, this also gives us the analogous result for the residue disk

corresponding to ιP .

Let jb : X
sm → J denote the Abel–Jacobi map with base point b defined in (8.3.5).

We also have a set of generators for the Mordell–Weil group J(Z) from the LMFDB,

G1 := [P − ιP ], (8.3.6)

G2 := [P +Q− 2 · ιP ].

Since X is a modular curve, its Jacobian has an action by the Hecke algebra. To

describe the Hecke action on J explicitly, we fix the following basis for H0(XQ,Ω
1
XQ

)

:

{
dx

2y − x3 − x− 1
,

xdx

2y − x3 − x− 1

}
. (8.3.7)

We focus on the endomorphism given by the action of the Hecke operator T2 on 1-

forms of X. The Kodaira–Spencer map gives an isomorphism between H0(XQ,Ω
1
XQ

)

and S2(67)
+. We choose a basis for S2(67)

+ that is given by q-expansions with rational
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coefficients, as follows:

g1 := q − 3q3 − 3q4 − 3q5 + q6 + 4q7 + 3q8 +O(q9),

g2 := q2 − q3 − 3q4 + 3q7 + 4q8 +O(q9).

Then we choose the model for X where du
v

corresponds to g1
dq
q
and udu

v
corresponds

to g2
dq
q
, by setting u = g2

g1
and v = q du

g1dq
. This allows us to find q-expansions for the

monomials {v2, 1, u, u2, . . . , u5, u6} and use linear algebra to get an explicit equation

for the new model of X,

v2 = 9u6 − 14u5 + 9u4 − 6u3 + 6u2 − 4u+ 1.

Writing down an explicit change of model to the regular model, we can find the q-

expansion of the forms in (8.3.7) and compute the Hecke action on these q-expansions.

This gives us the matrix representation of the Hecke operator T2 with respect to the

basis on (8.3.7). The trace of this matrix is nonzero, so we let f := 2T2+3 id: J → J .

The endomorphism f has trace zero and matrix representation

 1 −2

−2 −1

 (8.3.8)

with respect to the basis presented in (8.3.7). Using the work of [26], we can compute

a divisor Df ⊂ XQ ×XQ inducing f . The equations that define this divisor are given

in (B.0.1). Then Algorithm 7.1.2 produces the divisor Aα that satisfies the properties

of Lemma 7.1.3.

We now use Algorithm 7.1.10 to calculate f(G1) and f(G2), where G1 and G2 are
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the generators of the Mordell–Weil group of J as in (8.3.6).

Since J(Z) = J(Q), the divisor f(Gi) only needs to be computed over the rationals

for i = 1, 2. For example, applying (7.1.5) we get f(G1) = OX(Df |P×X −Df |ι(P )×X)

and we can compute an explicit divisor f(G1) using the equations for Df . We find

that

f(G1) = −G1 + 2G2 = [−(P − ιP ) + 2(P +Q− 2ιP )] = [P + 2Q− 3ιP ], (8.3.9)

f(G2) = 2G1 +G2 = [2(P − ιP ) + 1(P +Q− 2ιP )] = [3P +Q− 4ιP ].

Furthermore, we compute c = [−11G1 − 8G2] using Algorithm 7.1.7.

We can parametrize the residue disk over P up to finite precision by

Fp → X(Z/p2Z)P , ν 7→ Pν such that x(Pν)/p = ν.

We now find the trivializing section φ ◦ λ, following Section 7.2. By direct com-

putation the constant v from Proposition 7.2.2 is 0, hence the pseudoparametrization

φ has codomain Z3
p (instead of Z2

p ×Qp). This computation is done using code from

the repository [4].

Since p > 3, by Proposition 7.2.2 the map φ ◦ λ : Zp → Z3
p is linear modulo

p. We will calculate j̃b(P0) and j̃b(P1) following Algorithm 7.2.4 and interpolate to

determine the map. What the following computations show is that

φ ◦ λ(ν) ≡ (2ν, 0, 6− ν) mod p. (8.3.10)

By Proposition 7.2.1, the image of the map φ ◦ λ is cut out by two convergent power
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series. Giving Z3
p the coordinates (x1, x2, x3), we see the image of φ ◦ λ is cut out by

the equations g1 = 0, g2 = 0 with g1 ≡ x2 mod p, g2 ≡ 2x3 + x1 + 2 mod p.

Algorithm 7.2.4 relies on being able to compute Coleman–Gross local heights at

p and at primes of bad reduction. We first note that, since the special fiber of X at

67 is geometrically irreducible, the heights at ℓ ̸= p are all trivial, and we only have

to consider the heights at p. Balakrishnan [5] has implemented Coleman–Gross local

heights hp(D,E) for disjoint divisors of degree 0 on a curve Y with a few requirements:

(a) the hyperelliptic curve Y : y2 = H(x) is given by a monic odd degree model;

(b) the divisors D and E split as a sum of points D =
∑

i niPi, E =
∑

j mjQj with

Pi, Qj ∈ Y (Qp).

Remark 8.3.11. Suppose that D =
∑

i niPi and E = Div r+E ′ where E ′ =
∑

j mjQj

with Pi, Qj ∈ Y (Qp). Then

hp(D,E) = hp(D,E
′ +Div r) = hp(D,E

′) + hp(D,Div r) = hp(D,E
′) + log(r(D))

so we can also compute hp(D,E).

Therefore we make a change of model when doing computations on N . The even

degree model of X is given by

y2 = g(x) := x6 + 4x5 + 2x4 + 2x3 + x2 − 2x+ 1,

where g(x) has a 7-adic zero β = 4+ 3 · 7+ 4 · 72 +O(73). We can construct a degree
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5 model:

β6y′2 = g(βx′/(x′ − 1)) · (x′ − 1)6.

Letting c0 = 5 + 3 · 7 + 3 · 72 + O(73) be a 5th root of the leading coefficient of

g(βx′/(x′ − 1)) we obtain an odd degree model over Qp given by the coordinate

transformation from the even degree model

(x, y) 7→ (c0 · x/(x− β), β3y/(x− β)3). (8.3.12)

Remark 8.3.13. Forthcoming work of Gajović gives a practical algorithm and code for

computing Coleman–Gross local heights hp(D,E) on even degree hyperelliptic curves.

We now compute for P the local height ψ(j̃b(P )) = hp(P − b, Aα|P×X). Let B,C

be the divisors on X defined in Algorithm 7.1.2. One can check that B ∩Pν is empty

over Z/p2Z for all ν ∈ Fp, so we have Aα|Pν×X = Df |Pν×X+B−C; we denote Aα|P0×X

by EP0 . Over the rationals

EP0 ∼ [0, 0, 1]− [−1, 1, 1] + 2[−1, 0, 1]− 2[1,−3, 1] =: E ′
P0
,

with EP0 = E ′
P0

+ Div gP0 where gP0 is computed explicitly as an element of the

function field and given by equation (B.0.2). By Remark 8.3.11, we can decompose

hp(P − b, EP0) = hp(P − b, E ′
P0
) + hp(P − b,Div gP0). We compute

hp(P − b,Div gP0) = log gP0(P )/gP0(b) = log(4/9) ≡ 7 mod 49.
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We also compute

hp(P − b, E ′
P0
) = 5 · 7 + 3 · 72 + 3 · 73 + 6 · 74 + 75 + 5 · 76 + 2 · 77 + 6 · 78 +O(79).

So, ψ(j̃b(P )) = 6 · 7 +O(72).

Unlike the P0 case, the divisor DP1
:= Df |P1×X is not a sum of two p-adic points.

Instead we use the explicit Cantor’s algorithm [19, 66] to get a linearly equivalent

multiple which does split as a sum of p-adic points.

Let (u1, v1) be the Mumford representation for DP1 . Then using [66, Algorithm

Compose] we can compute (u2, v2), the Mumford representation for 2DP1 . Apply-

ing [66, Algorithm Reduce] we obtain the Mumford representation (u3, v3) for the

reduction of 2DP1 along with r = (y − v2(x))/u3(x), satisfying the relationship

2DP1 = Div(u1, v1) = Div((y − v2(x))/u3(x)) + Div(u3, v3). (8.3.14)

Remark 8.3.15. Since the computations for DP1 were done on the regular model, we

need to change the equations to the odd degree model. The Mumford divisor for

DP1 is a sum of 2 points over a totally ramified extension of Qp. Using the equations

(8.3.12) for the change of model we can map the points to two points (x1, y1), (x2, y2)

on the odd degree model and construct the corresponding degree 2 Mumford divisor

(u1, v1) vanishing on the x-coordinates using interpolation: u1(x) = (x− x1)(x− x2)

and v1(x) = y2 · (x− x1)/(x2 − x1) + y1 · (x− x2)/(x1 − x2).

Then 2DP1 is linearly equivalent to a divisor that splits into a sum of two points
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over the odd degree model. The splitting is given by {Q1, Q2} equal to

{(469610 · 7 +O(79),−15018865 +O(79)), (499647 +O(79),−14480684 +O(79))}.

By (8.3.14) we have

2DP1 = Q1 +Q2 +Div((y − v2(x))/u3(x)) + 2∞,

where v2(x) is given by

−(462222 +O(78))x3 + (73804 +O(78))x2 + (1999391 +O(78))x− 1649234 +O(78)

and u3(x) by

(1 +O(78))x2 + (1977884 +O(78))x+ 297368 · 7 +O(78).

With the splitting in hand, we can compute j̃b(P1):

1

2
hp(P1 − b, 2DP1) + hp(P1 − b, B − C) =hp(P1 − b, B − C)+

1

2
hp(P1 − b,Q1 +Q2 + 2∞)+

1

2
hp(P1 − b,Div((y − v2(x))/u3(x))).

The divisor B−C is not a sum of points, but we have that B−C is linearly equivalent
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to 4∞− − ιb− 5ιQ+Div(gP1), where gP1 is given by (B.0.3). Therefore ψ(j̃b(P1)) is

hp(P1 − b,DP1 +B − C)

=
1

2
hp(P1 − b,Q1 +Q2 + 2∞+ 2(4∞− − ιb− 5ιQ))

+
1

2
log((y − v2)(P1 − b)/u3(P1 − b)) + log gP1(P1 − b).

Then

log gP1(P1 − b) = 6 · 7 + 3 · 72 + 2 · 73 + 2 · 74 +O(75)

log(y − v2)(P1 − b)/u3(P1 − b)) = 72 + 3 · 73 + 2 · 74 +O(75))

hp(P1 − b,Q1 +Q2 + 2∞+ 2(4∞− − ιb− 5ιQ)) = 5 · 7 + 72 + 4 · 73 +O(74)

So ψ(j̃b(P1)) = 5 · 7 +O(72).

Now we can calculate j̃b(P1) in the bijection φ : T (Zp)j̃b(P ) → Z3
p given in Defini-

tion 6.6.1. We can compute this using the logarithm, normalized by the logarithm at

P :

log(P0 − b)− log(P0 − b) = (0, 0),

log(P1 − b)− log(P0 − b) = (2 · 7 +O(72), O(72)).

Hence we see φ(j̃b(P0)) = (0, 0, 6) and φ(j̃b(P1)) = (2, 0, 5). By interpolating these

values we get (8.3.10).

We now discuss the map κ using formulas in section 7.3. We will show that the

map φ ◦ κ : Z2
p → Z3

p, which is by Proposition 7.3.9 given by two linear polynomials
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and one quadratic polynomial, is modulo p equal to

(n1, n2) 7→ (n1,−n1 − 2n2,−3n2
1 − n1n2 − n1 + n2 − 1). (8.3.16)

We follow Algorithm 7.3.1 to construct the points of M×(Gi, f(Gj))(Z) and

M×(Gi, c)(Z) for i, j = 1, 2 as in [36, section 8.3].

We work out the example M×(G1, f(G2))(Z) here in detail. Recall from (8.3.9)

that we have G1 = [P − ιP ] and f(G2) = [3P +Q− 4ιP ]. By (6.3.2), the Gm-torsor

M×(G1, f(G2)) is f(G2)
∗O×

X(G1). Since we want to work with the image in N , and

this representation of f(G2) is not disjoint from G1 over Q, we represent G1 by the

linearly equivalent divisor ιb −∞+ +∞− − Q and f(G2) by the linearly equivalent

divisor 3(P − ιP ) + (P − ιQ). These divisors are not disjoint over Z because −ιQ

and ιb intersect over Z/2Z so

h(P − ιP, 3(P − ιP ) + (P − ιQ)) = hp(ιb−∞+ +∞− −Q, 3(P − ιP ) + (P − ιQ))

+ log(2).

We can compute Q12, which equals

([P − ιP ], [3(P − ιP ) + (P − ιQ)], h(ιb−∞+ +∞− −Q, 3(P − ιP ) + (P − ιQ)).

This also equals (G1, f(G1), 5 · 7 + 6 · 72 + 6 · 73 +O(74)).
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The remaining Qij are:

Q11 = (G1, f(G1), 2 · 7 + 5 · 73 +O(74)),

Q21 = (G2, f(G1), 4 · 7 + 3 · 72 + 2 · 73 +O(74)),

Q22 = (G2, f(G2), 3 · 72 + 4 · 73 +O(74)),

Q10 = (G1, c, 3 · 7 + 4 · 72 + 5 · 73 +O(74)),

Q20 = (G2, c, 2 · 7 + 2 · 73 +O(74)).

Remark 8.3.17. In practice, since we will need to add Qij in N ≃ J(Qp)×J(Qp)×Qp

we use the map log : J(Qp) → Qg
p for i, j = 1, 2 and for j = 0, we store Qij as

the vector (log(Gi), log(f(Gj)), h(Gi, f(Gj))). This allows us to add in Qg
p instead of

J(Qp).

We proceed to compute the bijection κ : Z2
p → T (Zp)j̃b(P ) of the integral points of

T modulo p2, as in [36, section 8.5]. The divisor jb(P ) ∈ J(Fp) is equal to the image

of

G̃t := G1 + 3G2

in J(Fp) and correspondingly we define e01 := 1 and e02 := 3.

Let G̃1 and G̃2 be a basis for the kernel of reduction J(Z) → J(Fp). Since

G̃1 = −3G1 + 7G2, G̃2 = 7G1 + 4G2

we define e11 = −3, e12 = 7, e21 = 7, e22 = 4.
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The map κZ is given in coordinates in N by sending (n1, n2) to

((7 + 72 + 73 +O(74)) · n1 + (4 · 73 +O(74)) · n2 + 5 · 7 + 5 · 72 + 73 +O(74),

(6 · 7 + 4 · 72 + 3 · 73 +O(74)) · n1 + (5 · 7 +O(74)) · n2 + 5 · 72 + 3 · 73 +O(74)),

((6 · 7 + 5 · 72 + 6 · 73 +O(74)) · n1 + (2 · 7 + 2 · 72 + 6 · 73 +O(74),

(4 · 7 + 3 · 72 + 3 · 73 +O(74)) · n1 + (3 · 7 + 3 · 72 +O(74)) · n2+

4 · 7 + 2 · 73 +O(74)),

(4 · 7 + 6 · 72 + 3 · 73 +O(74)) · n2
1 + (6 · 7 + 72 + 4 · 73 +O(74)) · n2

2+

(6 · 7 + 3 · 72 + 2 · 73 +O(74)) · n1 + (7 + 73 +O(74)) · n2+

6 · 7 + 6 · 72 + 3 · 73 +O(74)),

where we apply the logarithm to the first two coordinates as in Remark 8.3.17.

Finally, by [36, Theorem 4.10], the map κZ extends to a bijection

κ : Z2
p → T (Zp)j̃b(P ) (8.3.18)

with image T (Z)j̃b(P ). This map φ ◦ κ is polynomials (κ1, κ2, κ3) ∈ Qp[x1, x2]
3, with

κ1, κ2 linear and κ3 at worst quadratic. Applying Corollary 6.6.2, we obtain the

formula for φ ◦ κ given in (8.3.16).

We now have the tools to prove the upper bound on the number of points in the

residue disk #X(Z)P . We define

g1 := (φ ◦ κ)∗f1 = −n1 − 2n2, g2 := (φ ◦ κ)∗f2 = n2
1 − 2n1n2 − n1 + 2n2,

and A := Fp[n1, n2]/(g1, g2). The ring A is isomorphic to Fp[n2]/(n
2
2−3n2) ∼= Fp×Fp,
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so by [36, Theorem 4.12] we have an upper bound of 2 on #X(Z)P . Specifically, we

see that there is at most one point reducing to P0, namely P itself, and at most one

point reducing to P4 in X(Z/p2Z)P ; the other Pν have no rational points lying over

them.

Remark 8.3.19. If we calculate κ and j̃b with greater p-adic precision, we can compute

the point reducing to P4 with greater precision. This can be done by brute force, that

is, trying all lifts of the found solution n1 = 1, n2 = 3, ν = 4 and seeing when any

of the calculated values of κ or j̃b agree modulo the required precision. However,

there is a more efficient way. We can look at the “higher residue disks” X(Zp)P4

and T (Zp)j̃b(P4)
, consisting of points that reduce to a specified Z/p2Z-point. We

can parametrize X(Zp)P4 with the map Zp → X(Zp)P4 sending µ to P4+pµ. With

respect to our usual bijection φ : T (Zp)j̃b(P ) → Z3
p, we get a bijection of the higher

residue disk of the torsor T (Zp)j̃b(P4)
→ (1, 0, 2)+pZ3

p. Given these identifications, the

inclusion j̃b : X
sm(Zp)P4 → T (Zp)j̃b(P4)

is given by power series that are linear modulo

p. Like in section 7.2, these can be found by interpolation. Similarly, κ restricted

to (1 + pZp) × (3 + pZp) gives the inclusion κ : T (Z)j̃b(P4)
→ T (Zp)j̃b(P4)

. For these

identifications, κ is actually linear modulo p. Solving the resulting affine linear system

of equations, we get that the only possible intersection of the image of κ and of j̃b in

the higher residue disk T (Z/p3Z)j̃b(P4)
∼= F3

p is (5, 1, 5), corresponding to P4+pµ with

µ = 4. This is the point P32 ∈ X(Z/p3Z)P4 .

In total, we can strengthen Proposition 8.3.3 to say the residue disk X(Z)P is

contained in the set

{P, (4 · 7 + 4 · 72 +O(73), 6 + 6 · 7 + 6 · 72 +O(73))}.
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Tables

We present tables of all hyperbolic triples (a, b, c) and admissible primes p such that

the curve X0(a, b, c; p) has genus 0 or 1. The list with additional data is available

online [34].

To record p, we list the prime number p below p. We describe the group G =

PXL2(Fq) by presenting q and writing 1 in the PXL field if G = PSL2(Fq) and −1

if G = PGL2(Fq). We also record the information about the field E(a, b, c) and the

number of different prime ideals of E above p.

Nugent–Voight [56] define an invariant, the arithmetic dimension adim(a, b, c), to

be the dimension of a quaternionic Shimura variety attached to ∆(a, b, c) given by

the number of split real places of E(a, b, c) of the quaternion algebra A = E⟨∆(2)⟩. In

particular, the triangle group ∆(a, b, c) is arithmetic if and only if adim(a, b, c) = 1.

One subtlety is that there can be an isomorphism between the cover coming from

a nonarithmetic group and the cover coming from an arithmetic group. This can only
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happen when the arithmetic group is of noncompact type, with

(a, b, c) = (2, 3,∞), (2, 4,∞), (2, 6,∞), (2,∞,∞), (3, 3,∞), (3,∞,∞),

(4, 4,∞), (6, 6,∞), (∞,∞,∞)

by Takeuchi [68]. All of these arise from finite-index subgroups of PSL2(Z), so they

are related to classical modular curves, and are defined over Q. The ramification of

the curve X0(a, b, c; p) for a, b, c ∈ Z≥2 ∪ {∞} replaces any occurrence of ∞ by p (see

Proposition 3.3.5); this allows one to readily identify when this extra isomorphism

applies. We record this by adding (1) to the arithmetic dimension entry on the table.

For the arithmetic triangle groups ∆(a, b, c) such that ∆ ≃ Λ1, the corresponding

list of curves is contained in [72, Tables 4.1–4.7]. We confirmed that the intersection

is in agreement.

Finally, for noncocompact triples see Proposition 3.4.1.
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Genus 0, X0(a, b, c; p)

This is a long table split into three tables (over the next three pages).

(a, b, c) p q PXL adim E(a, b, c) # of p

(2, 3, 7) 7 7 1 1 Q(λ7) 1

(2, 3, 7) 2 8 1 1 Q(λ7) 1

(2, 3, 7) 13 13 1 1 Q(λ7) 3

(2, 3, 7) 29 29 1 1 Q(λ7) 3

(2, 3, 7) 43 43 1 1 Q(λ7) 3

(2, 3, 8) 7 7 −1 1 Q(
√
8) 2

(2, 3, 8) 3 9 −1 1 Q(
√
8) 1

(2, 3, 8) 17 17 1 1 Q(
√
8) 2

(2, 3, 8) 5 25 −1 1 Q(
√
8) 1

(2, 3, 9) 19 19 1 1 Q(λ9) 3

(2, 3, 9) 37 37 1 1 Q(λ9) 3

(2, 3, 10) 11 11 −1 1 Q(
√
5) 2

(2, 3, 10) 31 31 −1 1 Q(
√
5) 2

(2, 3, 12) 13 13 −1 1 Q(
√
12) 2

(2, 3, 12) 5 25 1 1 Q(
√
12) 1

(2, 3, 13) 13 13 1 2 (1) Q(λ13) 1

...
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(a, b, c) p q PXL adim E(a, b, c) # of p

(2, 3, 15) 2 16 1 2 (1) Q(λ15) 1

(2, 3, 18) 19 19 −1 1 Q(λ9) 3

(2, 4, 5) 5 5 −1 1 Q(
√
5) 1

(2, 4, 5) 3 9 1 1 Q(
√
5) 1

(2, 4, 5) 11 11 −1 1 Q(
√
5) 2

(2, 4, 5) 41 41 1 1 Q(
√
5) 2

(2, 4, 6) 5 5 −1 1 Q 1

(2, 4, 6) 7 7 −1 1 Q 1

(2, 4, 6) 13 13 −1 1 Q 1

(2, 4, 8) 3 9 −1 1 Q(
√
8) 1

(2, 4, 8) 17 17 1 1 Q(
√
8) 2

(2, 4, 12) 13 13 −1 1 Q(
√
12) 2

(2, 5, 5) 5 5 1 1 Q(
√
5) 1

(2, 5, 5) 11 11 1 1 Q(
√
5) 2

(2, 5, 10) 11 11 −1 1 Q(
√
5) 2

(2, 6, 6) 7 7 −1 1 Q 1

(2, 6, 6) 13 13 1 1 Q 1

(2, 6, 7) 7 7 −1 2 (1) Q(λ7) 1

...
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(a, b, c) p q PXL adim E(a, b, c) # of p

(2, 8, 8) 3 9 −1 1 Q(
√
8) 1

(3, 3, 4) 7 7 1 1 Q(
√
8) 2

(3, 3, 4) 3 9 1 1 Q(
√
8) 1

(3, 3, 4) 5 25 1 1 Q(
√
8) 1

(3, 3, 5) 2 4 1 1 Q(
√
5) 1

(3, 3, 6) 13 13 1 1 Q(
√
12) 2

(3, 4, 4) 5 5 −1 1 Q 1

(3, 4, 4) 13 13 −1 1 Q 1

(3, 6, 6) 7 7 −1 1 Q 1

(4, 4, 4) 3 9 1 1 Q(
√
8) 1
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Genus 1, X0(a, b, c; p)

This long table is split into seven tables (over the next seven pages).

(a, b, c) p q PXL adim E # of p

(2, 3, 7) 3 27 1 1 Q(λ7) 1

(2, 3, 7) 41 41 1 1 Q(λ7) 3

(2, 3, 7) 71 71 1 1 Q(λ7) 3

(2, 3, 7) 97 97 1 1 Q(λ7) 3

(2, 3, 7) 113 113 1 1 Q(λ7) 3

(2, 3, 7) 127 127 1 1 Q(λ7) 3

(2, 3, 8) 23 23 −1 1 Q(
√
8) 2

(2, 3, 8) 31 31 1 1 Q(
√
8) 2

(2, 3, 8) 41 41 −1 1 Q(
√
8) 2

(2, 3, 8) 73 73 −1 1 Q(
√
8) 2

(2, 3, 8) 97 97 1 1 Q(
√
8) 2

(2, 3, 9) 2 8 1 1 Q(λ9) 1

(2, 3, 9) 17 17 1 1 Q(λ9) 3

(2, 3, 9) 73 73 1 1 Q(λ9) 3

(2, 3, 10) 3 9 −1 1 Q(
√
5) 1

(2, 3, 10) 19 19 1 1 Q(
√
5) 2

...
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(a, b, c) p q PXL adim E # of p

(2, 3, 10) 41 41 1 1 Q(
√
5) 2

(2, 3, 10) 61 61 1 1 Q(
√
5) 2

(2, 3, 11) 11 11 1 1 Q(λ5) 1

(2, 3, 11) 23 23 1 1 Q(λ5) 5

(2, 3, 12) 11 11 −1 1 Q(
√
12) 2

(2, 3, 12) 37 37 −1 1 Q(
√
12) 2

(2, 3, 12) 7 49 1 1 Q(
√
12) 1

(2, 3, 13) 5 25 1 2 Q(λ13) 3

(2, 3, 13) 3 27 1 2 Q(λ13) 2

(2, 3, 14) 13 13 −1 1 Q(λ7) 3

(2, 3, 14) 29 29 1 1 Q(λ7) 3

(2, 3, 14) 43 43 −1 1 Q(λ7) 3

(2, 3, 15) 31 31 1 2 Q(λ15) 4

(2, 3, 16) 17 17 −1 1 Q(λ16) 4

(2, 3, 17) 2 16 1 2 Q(λ17) 2

(2, 3, 17) 17 17 1 2 Q(λ17) 1

(2, 3, 18) 37 37 1 1 Q(λ9) 3

(2, 3, 19) 19 19 1 3 (1) Q(λ19) 1

...

156

https://www.lmfdb.org/NumberField/2.2.5.1
https://www.lmfdb.org/NumberField/2.2.5.1
https://www.lmfdb.org/NumberField/5.5.14641.1
https://www.lmfdb.org/NumberField/5.5.14641.1
https://www.lmfdb.org/NumberField/2.2.12.1
https://www.lmfdb.org/NumberField/2.2.12.1
https://www.lmfdb.org/NumberField/2.2.12.1
https://www.lmfdb.org/NumberField/6.6.371293.1
https://www.lmfdb.org/NumberField/6.6.371293.1
https://www.lmfdb.org/NumberField/3.3.49.1
https://www.lmfdb.org/NumberField/3.3.49.1
https://www.lmfdb.org/NumberField/3.3.49.1
https://www.lmfdb.org/NumberField/4.4.1125.1
https://www.lmfdb.org/NumberField/4.4.2048.1
https://www.lmfdb.org/NumberField/8.8.410338673.1
https://www.lmfdb.org/NumberField/8.8.410338673.1
https://www.lmfdb.org/NumberField/3.3.81.1
https://www.lmfdb.org/NumberField/9.9.16983563041.1


Tables

(a, b, c) p q PXL adim E # of p

(2, 3, 20) 19 19 −1 2 Q(λ20) 4

(2, 3, 22) 23 23 −1 2 Q(λ5) 5

(2, 3, 24) 5 25 −1 1 Q(
√
2,
√
3) 2

(2, 3, 26) 3 27 −1 2 Q(λ13) 2

(2, 3, 30) 31 31 −1 1 Q(λ15) 4

(2, 4, 5) 19 19 −1 1 Q(
√
5) 2

(2, 4, 5) 29 29 −1 1 Q(
√
5) 2

(2, 4, 5) 31 31 1 1 Q(
√
5) 2

(2, 4, 5) 7 49 1 1 Q(
√
5) 1

(2, 4, 5) 61 61 −1 1 Q(
√
5) 2

(2, 4, 6) 11 11 −1 1 Q 1

(2, 4, 6) 17 17 −1 1 Q 1

(2, 4, 6) 19 19 −1 1 Q 1

(2, 4, 6) 29 29 −1 1 Q 1

(2, 4, 6) 31 31 −1 1 Q 1

(2, 4, 6) 37 37 −1 1 Q 1

(2, 4, 7) 7 7 1 1 Q(λ7) 1

(2, 4, 7) 13 13 −1 1 Q(λ7) 3

...
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Tables

(a, b, c) p q PXL adim E # of p

(2, 4, 7) 29 29 −1 1 Q(λ7) 3

(2, 4, 8) 7 7 −1 1 Q(
√
8) 2

(2, 4, 8) 5 25 −1 1 Q(
√
8) 1

(2, 4, 9) 17 17 1 2 Q(λ9) 3

(2, 4, 9) 19 19 −1 2 Q(λ9) 3

(2, 4, 10) 3 9 −1 1 Q(
√
5) 1

(2, 4, 10) 11 11 −1 1 Q(
√
5) 2

(2, 4, 11) 11 11 −1 2 (1) Q(λ5) 1

(2, 4, 12) 5 25 1 1 Q(
√
12) 1

(2, 4, 13) 13 13 −1 3 (1) Q(λ13) 1

(2, 4, 14) 13 13 −1 2 Q(λ7) 3

(2, 4, 16) 17 17 −1 2 Q(λ16) 4

(2, 4, 17) 17 17 1 4 (1) Q(λ17) 1

(2, 5, 5) 3 9 1 1 Q(
√
5) 1

(2, 5, 5) 31 31 1 1 Q(
√
5) 2

(2, 5, 5) 41 41 1 1 Q(
√
5) 2

(2, 5, 6) 5 5 −1 1 Q(
√
5) 1

(2, 5, 6) 11 11 1 1 Q(
√
5) 2

...
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Tables

(a, b, c) p q PXL adim E # of p

(2, 5, 6) 19 19 −1 1 Q(
√
5) 2

(2, 5, 6) 31 31 −1 1 Q(
√
5) 2

(2, 5, 8) 3 9 −1 1 Q(
√
2,
√
5) 2

(2, 5, 11) 11 11 1 4 (2) Q(
√
5, λ11) 2

(2, 5, 12) 11 11 −1 2 Q(
√
3,
√
5) 4

(2, 5, 15) 2 16 1 2 Q(λ15) 1

(2, 6, 6) 5 5 −1 1 Q 1

(2, 6, 6) 19 19 −1 1 Q 1

(2, 6, 7) 13 13 1 2 Q(λ7) 3

(2, 6, 8) 7 7 −1 1 Q(
√
8) 2

(2, 6, 9) 19 19 −1 2 Q(λ9) 3

(2, 6, 10) 11 11 −1 2 Q(
√
5) 2

(2, 6, 12) 13 13 −1 1 Q(
√
12) 2

(2, 6, 13) 13 13 1 4 (1) Q(λ13) 1

(2, 7, 7) 7 7 1 1 Q(λ7) 1

(2, 7, 8) 7 7 −1 2 Q(
√
2, λ7) 2

(2, 7, 9) 2 8 1 3 Q(λ7, λ9) 3

(2, 8, 8) 17 17 1 1 Q(
√
8) 2

...
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Tables

(a, b, c) p q PXL adim E # of p

(2, 8, 10) 3 9 −1 3 Q(
√
2,
√
5) 2

(2, 10, 10) 11 11 −1 1 Q(
√
5) 2

(2, 10, 11) 11 11 −1 6 (2) Q(
√
5, λ11) 2

(2, 12, 12) 13 13 −1 1 Q(
√
12) 2

(3, 3, 4) 17 17 1 1 Q(
√
8) 2

(3, 3, 4) 31 31 1 1 Q(
√
8) 2

(3, 3, 5) 3 9 1 1 Q(
√
5) 1

(3, 3, 5) 11 11 1 1 Q(
√
5) 2

(3, 3, 5) 19 19 1 1 Q(
√
5) 2

(3, 3, 5) 31 31 1 1 Q(
√
5) 2

(3, 3, 6) 5 25 1 1 Q(
√
12) 1

(3, 3, 7) 2 8 1 1 Q(λ7) 1

(3, 3, 7) 13 13 1 1 Q(λ7) 3

(3, 3, 9) 19 19 1 1 Q(λ9) 3

(3, 3, 15) 2 16 1 1 Q(λ15) 1

(3, 4, 4) 7 7 1 1 Q 1

(3, 4, 4) 17 17 1 1 Q 1

(3, 4, 5) 3 9 1 2 Q(
√
5,
√
8) 2

...
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Tables

(a, b, c) p q PXL adim E # of p

(3, 4, 6) 5 5 −1 1 Q(
√
24) 2

(3, 4, 7) 7 7 1 2 Q(
√
2, λ7) 2

(3, 4, 12) 13 13 −1 1 Q(
√
3) 2

(3, 5, 5) 2 4 1 1 Q(
√
5) 1

(3, 5, 5) 5 5 1 1 Q(
√
5) 1

(3, 5, 5) 11 11 1 1 Q(
√
5) 2

(3, 6, 6) 13 13 1 1 Q 1

(3, 6, 8) 7 7 −1 3 4.4.18432.1 4

(3, 7, 7) 7 7 1 2 (1) Q(λ7) 1

(3, 7, 7) 2 8 1 2 (1) Q(λ7) 1

(4, 4, 4) 17 17 1 1 Q(
√
8) 2

(4, 4, 5) 3 9 1 1 Q(
√
5) 1

(4, 4, 6) 13 13 −1 1 Q(
√
12) 2

(4, 5, 6) 5 5 −1 2 Q(
√
5,
√
24) 2

(4, 6, 6) 7 7 −1 1 Q(
√
8) 2

(4, 8, 8) 3 9 −1 1 Q(
√
2) 1

(5, 5, 5) 11 11 1 1 Q(
√
5) 2

(7, 7, 7) 2 8 1 1 Q(λ7) 1
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Appendix B

Equations

We provide the equations used in the computations of section 8.3.

We give coordinates ((x, y), (u, v)) to X ×X. With this notation, the equations

that define the divisor Df are the following. The set of equations is presented in the

following five pages.

Df := [x5 − x3y − xy − y2 − x− y,

u5 − u3v − uv − v2 − u− v,

1120x20u4 − 2068x20u3 + 8124x19u4 + 2407x20u2 − 16894x19u3+

35279x18u4 − 1641x20u+ 18092x19u2 − 67012x18u3 + 8178x19u+

102591x17u4 + 378x20 − 58447x18u2 − 173283x17u3+

216476x16u4 + 774x19 − 14247x18u+ 103331x17u2

− 297137x16u3 + 334741x15u4 + 1458x18 − 31130x17u+

180514x16u2 − 358567x15u3 + 360468x14u4 + 10605x17 + · · ·

(B.0.1)
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Equations

· · · − 90380x16u+ 290195x15u2 − 395289x14u3 + 240873x13u4+

20415x16 − 159334x15u+ 394529x14u2 − 407100x13u3 + 44248x12u4+

22701x15 − 112959x14u+ 418497x13u2 − 493887x12u3 − 105112x11u4+

25606x14 − 115611x13u+ 111265x12u2 − 417580x11u3 − 92961x10u4+

1092x13 − 103527x12u+ 145152x11u2 − 88490x10u3 − 92811x9u4+

48856x12 + 186438x11u+ 267721x10u2 − 155622x9u3 − 45395x8u4−

27776x11 − 191295x10u− 178159x9u2 − 70489x8u3 + 16905x7u4−

61956x10 − 74059x9u+ 378244x8u2 + 232801x7u3 + 15979x6u4+

74366x9 + 338472x8u+ 227589x7u2 − 74613x6u3 − 16012x5u4−

87675x8 − 182672x7u− 189206x6u2 + 26802x5u3 + 25133x4u4−

85989x7 − 42976x6u+ 119160x5u2 + 38380x4u3 − 14569x3u4+

57369x6 + 50376x5u− 22878x4u2 − 26236x3u3 + 5653x2u4−

19638x5 − 66959x4u+ 10199x3u2 + 7737x2u3 − 1185xu4 − 18109x4+

33891x3u− 10338x2u2 + 126xu3 + 90u4 + 8894x3 − 13882x2u+

3365xu2 − 189u3 − 1493x2 + 903xu− 105u2 − 176x+ 18u+ 4,

7605023584402176072496x8u2 + 276848668324194788374x8u+

2162467398048698636700x7u2 − 6272554892698832692599x6yu2−

4626446567682633747828x8v − 1168446771586826201673x8−

9165162915676858733619x7u+ 2241777840578137196064x6yu−

8418141092008037071834x6u2 − 13292836185052144419762x5yu2 + · · ·
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· · · 754031123597981360894x7v + 6328906343710703634915x6yv+

2615195628519325252191x7 + 1831262799801461507208x6y+

2756070458250784948869x6u+ 15428857376010803153841x5yu−

11784051570902048135703x5u2 − 7230872538984499657093x4yu2+

16912156368781966844899x6v + 8794134244461097697655x5yv+

13382241469127150196465x6 + 4082469582390924565047x5y+

21852540598540798087489x5u+ 13245519579554143163167x4yu−

22985066915160029536074x4u2 − 23255128704790712417887x3yu2+

13682822171560412185605x5v − 165783020433170604550x4yv−

6931902302166164206278x5 − 5083451259029072420619x4y−

11826350429569203951840x4u− 19199699515311811452213x3yu−

28484484698745046075669x3u2 − 17690076715222265602489x2yu2+

+ 17805473443696348827856x4v + 675202808346140479378x3yv+

6675814886892603310402x4 + 5577161777751351740903x3y+

19969878692979973055652x3u+ 18120117063433135735083x2yu+

936713375105971953531x2u2 + 11466853454037386066020xyu2+

10542523972242190209720x3v + 8824421921807720328364x2yv+

11877160806671853672804x3 + 13363913247174903062953x2y+

14059453652617340471247x2u+ 10218057833893227356605xyu−

308361787245220032444xu2 − 5322779956111165805354yu2 + · · ·

164



Equations

· · ·+ 5505912629321680476560x2v − 4290695327689320279111xyv−

7612900075627672207215x2 − 14312446660999532149696xy+

4434640084437900284987xu+ 3704885128833955385271yu−

993796068912520397282u2 + 57535042100777081983xv+

3829830430486931582408yv + 5885803647094172346013y+

960790192851544016507u+ 281506727438003913980v+

113825130829311801917,

790135714013668417211x8u2 − 52199251698889313788x8u+

445626397822123380960x7u2 − 484065148072652139393x6yu2−

355589770017865569639x8v − 97839554801178078020x8−

678398566039036992539x7u+ 155198586393263487818x6yu−

113052264818131543479x6u2 − 874765196307671212424x5yu2+

50893236050896468243x7v + 549806068461932423405x6yv+

245852373764948827027x7 + 222973665578085376766x6y−

186006391998859651031x6u+ 918135020900189841469x5yu−

523150712434256670561x5u2 − 328927822772590067729x4yu2+

1388867642711454788442x6v + 882684613081080621057x5yv+

1142791546745352334216x6 + 533732004549278022010x5y+

394464353147344850914x5u+ 874586564270896523236x4yu−

1503623861758469781638x4u2 − 1118256877330123036794x3yu2 + · · ·
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· · ·+ 962253617070423872834x5v + 260675420287904377496x4yv−

73108557049802456668x5 − 177841514864980758518x4y−

1357965873921914116106x4u− 1595337468013963640622x3yu−

1882558303840937888797x3u2 − 1293922634022119677492x2yu2+

1390753692690189767706x4v + 246438908010171275168x3yv+

793691222208583979104x4 + 499223278514256382778x3y+

645256167770372257021x3u+ 984786145000107598929x2yu−

280718524673749556697x2u2 + 779933023636684223799xyu2+

842189446494471065427x3v + 558551444022004233780x2yv+

913241896994237593431x3 + 1244963363551342949690x2y+

727117765460043207926x2u+ 1012441030923028187282xyu−

21753359867708939458xu2 − 344942106360625888966yu2+

353025200232170583936x2v − 211033121948623991455xyv−

163875785683850219832x2 − 617198754625174179093xy+

597830134728356122829xu+ 169901861802716830954yu−

82203224665107226192u2 + 82310455430799619016xv+

191169787322405231086yv + 341475392487935405751x+

350318508927358217032y − 21028731891073941584u−

9558514495942700720v].

166
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Now we assume that u and v are elements of the function field of X satisfying

v2 + (u3 + u+ 1) = u5 − u. The equation gP0 is given by

gP0
:=118016503u11 + 793929202u10 − 2478346563u9 − 3325919630u8−

3561952636u7 + 2886039937u6 + 5879367604u5 − 3830171961u4+

75101411u3 + 2188669692u2 − 697370245u+ 85830184)·

(338078160u14 + 1369216548u13 + 2510230338u12 + 2713077234u11+

1318504824u10 − 3414589416u9 − 135231264u8 − 236654712u7−

6668591706u6 + 1850977926u5 + 3220194474u4 − 1293148962u3+

397241838u2 − 8451954u)−1v−1 + (375507055u14 + 718827791u13−

1351825398u12 − 3390292268u11 − 6705483125u10 + 42915092u9−

3840900734u8 − 10868247049u7 + 12659952140u6 + 12198614901u5−

5503860549u4 − 1083606073u3 + 1748789999u2 − 686641472u+

85830184) · (338078160u14 + 1369216548u13 + 2510230338u12+

2713077234u11 + 1318504824u10 − 3414589416u9 − 135231264u8−

236654712u7 − 6668591706u6 + 1850977926u5 + 3220194474u4−

1293148962u3 + 397241838u2 − 8451954u)−1.

(B.0.2)
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Similarly, the equation gP1 is given by

gP1
:=(9192u12 + 11490u11 + 10341u10 + 104559u9 + 116049u8+

189585u7 + 24129u6 − 659526u5 − 335508u4 + 291846u3+

135582u2 + 34470u+ 1149) · (17360u11 + 35588u10 + 40362u9+

23002u8 − 18662u7 − 161014u6 + 333746u5 − 518630u4 + 361088u3−

108500u2 + 21266u− 434)−1v−1 + (−9192u14 − 2298u13 − 8043u12−

118347u11 − 181542u10 − 351594u9 − 2298u8 + 689400u7 − 13788u6−

476835u5 + 65493u4 + 167754u3 + 52854u2 − 13788u+ 2298)·

(17360u11 + 35588u10 + 40362u9 + 23002u8 − 18662u7 − 161014u6+

333746u5 − 518630u4 + 361088u3 − 108500u2+

21266u− 434)−1.

(B.0.3)
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[65] Giovanni Staglianò, A Macaulay2 package for computations with rational maps,

J. Softw. Algebra Geom. 8 (2018), 61–70. MR 3857650 ↑109.

[66] Andrew V. Sutherland, Fast Jacobian arithmetic for hyperelliptic curves of genus

3, Proceedings of the Thirteenth Algorithmic Number Theory Symposium, Open

Book Ser., vol. 2, Math. Sci. Publ., Berkeley, CA, 2019, pp. 425–442. MR 3952026

↑116, 143.

[67] Kisao Takeuchi, On some discrete subgroups of SL2(R), J. Fac. Sci. Univ. Tokyo

Sect. I 16 (1969), 97–100. MR 262171 ↑18.

[68] , Arithmetic triangle groups, J. Math. Soc. Japan 29 (1977), no. 1, 91–

106. MR 429744 ↑4, 151.

[69] , Commensurability classes of arithmetic triangle groups, J. Fac. Sci. Univ.

Tokyo Sect. IA Math. 24 (1977), no. 1, 201–212. MR 463116 ↑4, 17.

177

https://stacks.math.columbia.edu
https://stacks.math.columbia.edu


BIBLIOGRAPHY

[70] J. G. Thompson, A finiteness theorem for subgroups of PSL(2, R) which are

commensurable with PSL(2, Z), The Santa Cruz Conference on Finite Groups

(Univ. California, Santa Cruz, Calif., 1979), Proc. Sympos. Pure Math., vol. 37,

Amer. Math. Soc., Providence, R.I., 1980, pp. 533–555. MR 604632 ↑7.

[71] Raymond van Bommel, David Holmes, and J. Steffen Müller, Explicit arithmetic

intersection theory and computation of Néron-Tate heights, Math. Comp. 89
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