Invariants of Artin-Schreier curves

Juanita Duque Rosero Boston University

Joint work with Heidi Goodson, Elisa Lorenzo García, Beth Malmskog, and Renate Scheidler

Recognize the Colombian bird species

Credit: Rodrigo Duque López

Recognize the Colombian bird species (Up to isomorphism) Credit: Re

Credit: Rodrigo Duque López Stilpnia heinei Penelope argyrosis Cyanocorax yncas Thraupis episcopus Zonotrichia capensis Momotus Piranga rubra Stilpnia heinei Rupornis magnirostris Turdus serranus aequatorialis

Recognize the Colombian bird species (Up to isomorphism)

The j-invariant

Given an elliptic curve over a field K,

$$E: y^2 + a_1xy + a_3y = x^3 + a_2x^2 + a_4x + a_6$$

its j-invariant is

$$\begin{pmatrix} a_1^{12} + 24a_1^{10}a_2 - 72a_1^9a_3 + 240a_1^8a_2^2 - 144a_1^8a_4 - 1152a_1^7a_2a_3 + 1280a_1^6a_2^3 - 2304a_1^6a_2a_4 + 1728a_1^6a_3^2 \\ -6912a_1^5a_2^2a_3 + 6912a_1^5a_3a_4 + 3840a_1^4a_2^4 - 13824a_1^4a_2^2a_4 + 13824a_1^4a_2a_3^2 + 6912a_1^4a_4^2 - 18432a_1^3a_2^3a_3 \\ +55296a_1^3a_2a_3a_4 - 13824a_1^3a_3^3 + 6144a_1^2a_2^5 - 36864a_1^2a_2^3a_4 + 27648a_1^2a_2^2a_3^2 + 55296a_1^2a_2a_4^2 - 82944a_1^2a_3^2a_4 \\ j(E) = -18432a_1a_2^4a_3 + 110592a_1a_2^2a_3a_4 - 165888a_1a_3a_4^2 + 4096a_2^6 - 36864a_2^4a_4 + 110592a_2^2a_4^2 - 110592a_4^3 \end{pmatrix} \\ \begin{pmatrix} -a_1^6a_6 + a_1^5a_3a_4 - a_1^4a_2a_3^2 - 12a_1^4a_2a_6 + a_1^4a_4^2 + 8a_1^3a_2a_3a_4 + 9a_1^3a_3^4 - 8a_1^3a_3^3 + 36a_1^3a_3a_6 - 8a_1^2a_2^2a_3^2 \\ -48a_1^2a_2^2a_6 + 8a_1^2a_2a_4^2 + 18a_1^2a_3^3a_4 - 48a_1^2a_3^2a_4 + 72a_1^2a_4a_6 + 16a_1a_2^2a_3a_4 + 36a_1a_2a_3^4 + 144a_1a_2a_3a_6 \\ -96a_1a_3a_4^2 - 16a_2^3a_3^2 - 64a_2^3a_6 + 16a_2^2a_4^2 + 72a_2a_3^3a_4 + 288a_2a_4a_6 - 27a_3^6 - 216a_3^3a_6 - 64a_4^3 - 432a_6^2 \end{pmatrix}^{-1}$$

The j-invariant

Given an elliptic curve over a field K,

$$E: y^2 + a_1xy + a_3y = x^3 + a_2x^2 + a_4x + a_6$$

its j-invariant is

$$\begin{pmatrix} a_1^{12} + 24a_1^{10}a_2 - 72a_1^9a_3 + 240a_1^8a_2^2 - 144a_1^8a_4 - 1152a_1^7a_2a_3 + 1280a_1^6a_2^3 - 2304a_1^6a_2a_4 + 1728a_1^6a_3^2 \\ -6912a_1^5a_2^2a_3 + 6912a_1^5a_3a_4 + 3840a_1^4a_2^4 - 13824a_1^4a_2^2a_4 + 13824a_1^4a_2a_3^2 + 6912a_1^4a_4^2 - 18432a_1^3a_2^3a_3 \\ +55296a_1^3a_2a_3a_4 - 13824a_1^3a_3^3 + 6144a_1^2a_2^5 - 36864a_1^2a_2^3a_4 + 27648a_1^2a_2^2a_3^2 + 55296a_1^2a_2a_4^2 - 82944a_1^2a_3^2a_4 \\ j(E) = -18432a_1a_2^4a_3 + 110592a_1a_2^2a_3a_4 - 165888a_1a_3a_4^2 + 4096a_2^6 - 36864a_2^4a_4 + 110592a_2^2a_4^2 - 110592a_4^3 \end{pmatrix} \\ \begin{pmatrix} -a_1^6a_6 + a_1^5a_3a_4 - a_1^4a_2a_3^2 - 12a_1^4a_2a_6 + a_1^4a_4^2 + 8a_1^3a_2a_3a_4 + 9a_1^3a_3^4 - 8a_1^3a_3^3 + 36a_1^3a_3a_6 - 8a_1^2a_2^2a_3^2 \\ -48a_1^2a_2^2a_6 + 8a_1^2a_2a_4^2 + 18a_1^2a_3^3a_4 - 48a_1^2a_3^2a_4 + 72a_2a_3^3a_4 + 288a_2a_4a_6 - 27a_3^6 - 216a_3^3a_6 - 64a_3^3 - 432a_6^2 \end{pmatrix}^{-1}$$

Theorem. Two elliptic curves E_1 and E_2 are isomorphic over \overline{K} if and only if $j(E_1) = j(E_2)$.

The j-invariant

The value j(E) is a **reconstructing invariant**: for all $j(E) \in \overline{\mathbb{Q}}$, there is an elliptic curve with this j-invariant.

Example. For j(E) = 1728, we can pick

Invariants for curves

- Elliptic curves (genus 1): *j*-invariant.
- Genus 2 curves over Q: Igusa-Clebsch invariants [Igusa '60].
- Genus 3 non-hyperelliptic curves [Ohno '07].
- Genus 3 hyperelliptic curves [Shioda '67, Lercier-Ritzenthaler '12].

Invariants for curves

- Elliptic curves (genus 1): *j*-invariant.
- Genus 2 curves over Q: Igusa-Clebsch invariants [Igusa '60].
- Genus 3 non-hyperelliptic curves [Ohno '07].
- Genus 3 hyperelliptic curves [Shioda '67, Lercier-Ritzenthaler '12].

Today: Invariants for Artin-Schreier curves.

Fix a prime p. An Artin-Schreier curve over $\overline{\mathbb{F}}_p$ is a curve of the form

$$C_f$$
: $y^p - y = f(x)$,

where $f(x) \in \overline{\mathbb{F}}_p(x)$ and $f(x) \neq z^p - z$ for any $z \in \overline{\mathbb{F}}_p(x)$.

Fix a prime p. An **Artin-Schreier curve** over $\overline{\mathbb{F}}_p$ is a curve of the form

$$C_f$$
: $y^p - y = f(x)$,

where $f(x) \in \overline{\mathbb{F}}_p(x)$ and $f(x) \neq z^p - z$ for any $z \in \overline{\mathbb{F}}_p(x)$.

The genus of C_f is $\frac{p-1}{2}\sum_{i=1}^{\infty}(d_i+1)$, where the order of the poles of f(x) is d_i .

Fix a prime p. An **Artin-Schreier curve** over $\overline{\mathbb{F}}_p$ is a curve of the form

$$C_f$$
: $y^p - y = f(x)$,

where $f(x) \in \overline{\mathbb{F}}_p(x)$ and $f(x) \neq z^p - z$ for any $z \in \overline{\mathbb{F}}_p(x)$.

The genus of C_f is $\frac{p-1}{2}\sum_i (d_i+1)$, where the order of the poles of f(x) is d_i .

Applications to coding theory. van der Geer and van der Vlugt, for example, study codes coming from the curves $y^p - y = ax + 1/x$ and construct curves with many points using Artin-Schreier curves.

Describing the moduli space

- Given $g \ge 0$, we study \mathscr{AS}_g , the moduli space of Artin-Schreier $\overline{\mathbb{F}}_p$ -curves of genus g.
- Let $\mathscr{AS}_{g,s}$ be the locus of \mathscr{AS}_g corresponding to the curves with p-rank exactly s.
- **Theorem [Pries-Zhu '12]**. The set of irreducible components of $\mathscr{AS}_{g,s}$ is in bijection with the set of partitions of $((2g)(p-1)^{-1}+2)$ into $(s(p-1)^{-1}+1)$ positive integers that are not equal to 1 modulo p.
- Example. For p = 3,

$$\mathcal{AS}_{11,8} = \mathcal{AS}_{[5,2,2,2,2]} + \mathcal{AS}_{[3,3,3,2,2]}.$$

Theorem [D.-Goodson-Lorenzo García-Malmskog-Scheidler '24]. There is an explicit set of reconstructing invariants for all Artin-Schreier curves of genus 3 and 4 in odd characteristic.

Theorem [D.-Goodson-Lorenzo García-Malmskog-Scheidler '24]. There is an explicit set of reconstructing invariants for all Artin-Schreier curves of genus 3 and 4 in odd characteristic.

Theorem [D.-Lorenzo García-Malmskog-Scheidler (*in progress*)]. There is an algorithm to find the set of reconstructing invariants for $\mathscr{AS}_{g,s}$ in odd characteristic.

Theorem [D.-Goodson-Lorenzo García-Malmskog-Scheidler '24]. There is an explicit set of reconstructing invariants for all Artin-Schreier curves of genus 3 and 4 in odd characteristic.

Theorem [D.-Lorenzo García-Malmskog-Scheidler (in progress)]. There is an algorithm to find the set of reconstructing invariants for $\mathcal{AS}_{g,s}$ in odd characteristic.

- 1. Define standard forms.
- 2. Find all possible isomorphisms to other curves in standard form.
- 3. Compute invariants of the ring.

Theorem [D.-Goodson-Lorenzo García-Malmskog-Scheidler '24]. There is an explicit set of reconstructing invariants for all Artin-Schreier curves of genus 3 and 4 in odd characteristic.

Theorem [D.-Lorenzo García-Malmskog-Scheidler (in progress)]. There is an algorithm to find the set of reconstructing invariants for $\mathcal{AS}_{g,s}$ in odd characteristic.

- 1. Define standard forms.
- 2. Find all possible isomorphisms to other curves in standard form. HARD!
- 3. Compute invariants of the ring.

Theorem [D.-Goodson-Lorenzo García-Malmskog-Scheidler '24]. There is an explicit set of reconstructing invariants for all Artin-Schreier curves of genus 3 and 4 in odd characteristic.

Theorem [D.-Lorenzo García-Malmskog-Scheidler (in progress)]. There is an algorithm to find the set of reconstructing invariants for $\mathcal{AS}_{g,s}$ in odd characteristic.

- 1. Define standard forms.
- 2. Find all possible isomorphisms to other curves in standard form. HARD!
- 3. Compute invariants of the ring.

Isomorphisms

Lemma. Any isomorphism between Artin-Schreier curves is given by a map of the form

$$(x,y) \mapsto \left(\frac{\alpha x + \beta}{\gamma x + \delta}, \lambda y + h(x)\right),$$

where

$$\lambda \in \mathbb{F}_p^{\times}, \qquad \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \in \mathrm{GL}_2(\overline{\mathbb{F}}_p), \qquad h(x) \in \overline{\mathbb{F}}_p(x).$$

Isomorphisms

Lemma. Any isomorphism between Artin-Schreier curves is given by a map of the form

$$(x,y) \mapsto \left(\frac{\alpha x + \beta}{\gamma x + \delta}, \lambda y + h(x)\right),$$

where

$$\lambda \in \mathbb{F}_p^{\times}, \qquad \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \in \mathrm{GL}_2(\overline{\mathbb{F}}_p), \qquad h(x) \in \overline{\mathbb{F}}_p(x).$$

Example.
$$y^3 - y = x^4 - x^3 - x^2 + x$$
 and $y^3 - y = x^4 - x^2$ are isomorphic via $(x, y) \mapsto (-x + 1, y - \epsilon)$, where ϵ is a root of $t^3 - t - 1 = 0$.

Standard form

Let p be an odd prime and C_f : $y^p - y = f(x)$ be an Artin-Schreier $\overline{\mathbb{F}}_p$ -curve with f(x) having exactly one pole of order d. Then C_f is isomorphic to an Artin-Schreier curve

$$C: y^p - y = x^d + Q(x),$$

where $Q(x) \in \overline{\mathbb{F}}_p[x]$ is a multiple of x^2 and no monomial appearing in Q(x) has an exponent that is divisible by p.

Standard form

Let p be an odd prime and C_f : $y^p - y = f(x)$ be an Artin-Schreier $\overline{\mathbb{F}}_p$ -curve with f(x) having exactly 3 poles of respective orders $d_1 \ge d_2 \ge d_3$. Then C_f is isomorphic to

$$C_g\colon y^p-y=g(x),$$

where $g(x) \in \overline{\mathbb{F}}_p(x)$ is given by

$$g(x) = F(x) + G\left(\frac{1}{x}\right) + H\left(\frac{1}{x-1}\right),$$

for F(x), G(x), $H(x) \in \overline{\mathbb{F}}_p[x]$, $\deg(F) = d_1$, $\deg(G) = d_2$, $\deg(H) = d_3$, and no monomial appearing in F(x), G(x), H(x), has an exponent that is divisible by p.

Every Artin-Schreier $\overline{\mathbb{F}}_3$ -curve with f(x) having only one pole of order 4 is isomorphic to a curve of the form

$$C: y^3 - y = x^4 + ax^2$$

where $a \in \overline{\mathbb{F}}_3$.

Every Artin-Schreier $\overline{\mathbb{F}}_3$ -curve with f(x) having only one pole of order 4 is isomorphic to a curve of the form

$$C: y^3 - y = x^4 + ax^2$$

where $a \in \overline{\mathbb{F}}_3$.

To describe the space $\mathscr{AS}_{3,0}$ of Artin-Schreier $\overline{\mathbb{F}}_3$ -curves with genus 3 and p-rank 0, it is enough to give $a \in \overline{\mathbb{F}}_p$!

$$C: y^3 - y = x^4 + ax^2$$

Isomorphisms between curves in standard form with $a \neq 0$ are given, up to composition with powers of σ : $(x, y) \mapsto (x, y + 1)$, by

$$(x, y) \mapsto (\alpha x, \lambda y),$$

where $\lambda \in \mathbb{F}_3^{\times}$ and $\alpha \in \overline{\mathbb{F}}_3$ with $\alpha^4 = \lambda$.

Example: $AS_{3,0}$

$$C: y^3 - y = x^4 + ax^2$$

Isomorphisms between curves in standard form with $a \neq 0$ are given, up to composition with powers of σ : $(x, y) \mapsto (x, y + 1)$, by

$$(x, y) \mapsto (\alpha x, \lambda y),$$

where $\lambda \in \mathbb{F}_3^{\times}$ and $\alpha \in \overline{\mathbb{F}}_3$ with $\alpha^4 = \lambda$.

Now we have a finite group G acting on $\overline{\mathbb{F}}_3[a]$!

$$C: y^3 - y = x^4 + ax^2$$

 $(x, y) \mapsto (\alpha x, \lambda y), \quad \lambda \in \mathbb{F}_3^{\times} \text{ and } \alpha \in \overline{\mathbb{F}}_3 \text{ with } \alpha^4 = \lambda.$

λ	α	Ĉ	\boldsymbol{a}
	ζ_8^2	$y^3 - y = x^4 + \zeta_8^4 a x^2$	$\zeta_8^4 a$
1	ζ ₈	$y^3 - y = x^4 + ax^2$	$\zeta_8^8 a$
1	ζ_8^6	$y^3 - y = x^4 + \zeta_8^4 a x^2$	$\zeta_8^4 a$
1	ζ ₈	$y^3 - y = x^4 + ax^2$	$\zeta_8^8 a$

λ	α	Č	\boldsymbol{a}
— 1	ζ_8	$y^3 - y = x^4 - \zeta_8^2 a x^2$	$\zeta_8^6 a$
-1	ζ_8^3	$y^3 - y = x^4 - \zeta_8^6 a x^2$	$\zeta_8^2 a$
-1	ζ_8^5	$y^3 - y = x^4 - \zeta_8^2 a x^2$	$\zeta_8^6 a$
-1	ζ_8^7	$y^3 - y = x^4 - \zeta_8^6 a x^2$	$\zeta_8^2 a$

$$C \colon y^3 - y = x^4 + ax^2$$

$$(x, y) \mapsto (\alpha x, \lambda y), \quad \lambda \in \mathbb{F}_3^{\times} \text{ and } \alpha \in \overline{\mathbb{F}}_3 \text{ with } \alpha^4 = \lambda.$$

$$\{a\}^G = \{\zeta_8^4 a, \zeta_8^8 a, \zeta_8^6 a, \zeta_8^2 a\}$$

Example: $AS_{3,0}$

$$C \colon y^3 - y = x^4 + ax^2$$

$$(x, y) \mapsto (\alpha x, \lambda y), \quad \lambda \in \mathbb{F}_3^{\times} \text{ and } \alpha \in \overline{\mathbb{F}}_3 \text{ with } \alpha^4 = \lambda.$$

$$\{a\}^G = \{\zeta_8^4 a, \zeta_8^8 a, \zeta_8^6 a, \zeta_8^2 a\}$$

Corollary. The element a^4 is a reconstructing invariant and generates the ring of invariants for $\mathcal{AS}_{3,0}$.

If we start with a model

C:
$$y^3 - y = \frac{ax^4 + bx^3 + cx^2 + dx + e}{(x - \tau)^4}$$
,

the reconstructing invariant can be chosen to be

$$I(C) = \frac{c^4}{(a\tau^4 + b\tau^3 + c\tau^2 + d\tau + e)^4}.$$

If we start with a model

C:
$$y^3 - y = \frac{ax^4 + bx^3 + cx^2 + dx + e}{(x - \tau)^4}$$
,

the reconstructing invariant can be chosen to be

$$I(C) = \frac{c^4}{(a\tau^4 + b\tau^3 + c\tau^2 + d\tau + e)^4}.$$

Example.

$$I(y^{3} - y = x^{4} - x^{3} - x^{2} + x) = I(y^{3} - y = x^{4} - x^{2}) = 1$$

$$y^{3} - y = x^{4} - x^{3} - x^{2} + x \simeq y^{3} - y = x^{4} - x^{2}$$

$$(x, y) \mapsto (-x + 1, y - \epsilon)$$

$$\epsilon^{3} - \epsilon - 1 = 0.$$

Theorem [D.-Goodson-Lorenzo García-Malmskog-Scheidler '24]. A system of reconstructing invariants for all Artin-Schreier curves of genus g=3,4 in characteristic p>2 is:

$oldsymbol{g}$	p	s	Standard form	Set of Reconstructing invariants over $\overline{\mathbb{F}}_p$
3	3	0	$y^3 - y = x^4 + ax^2$	$\{a^4\}$
3	3	2	$y^3 - y = x^2 + ax + \frac{b}{x}$	$\{a^4,ab,b^4\}$
3	7	0	$y^7 - y = x^2$	\emptyset
4	3	0	$y^3 - y = x^5 + cx^4 + dx^2$	$\{(c^3+d)^{10}, (-cd-\epsilon^2)^5, (c^3+d)^2(-cd-\epsilon^2)\}$ where $\epsilon^3=c$
4	3	2	$y^3 - y = x^2 + ax + \frac{b}{x} + \frac{c}{x^2}$	$\{c, ab, a^4c^2 - b^4\}$
4	3	4	$y^{3} - y = x^{2} + ax + \frac{b}{x} + \frac{c}{x - 1}$	$\{(abc)^2, (abc)(a-b-c), ab+ac-bc\}$
4	5	0	$y^5 - y = x^3 + ax^2$	$\{a^{12}\}$
4	5	1	$y^5 - y = x + \frac{a}{x}$	$\left\{a^2\right\}$

The general algorithm

Algorithm [D.-Lorenzo García-Malmskog-Scheidler (in progress)].

Input: $g \ge 0$ and $s \ge 0$.

Output: A set of reconstructing invariants for $\mathscr{AS}_{g,s}$.

- 1. Write a general curve C in *standard form*, with variables a_1, \ldots, a_n .
- 2. Find the possible transformations of C that produce a new curve in standard form. They are compositions of the following:
 - a. Swap poles that are not distinguished and have the same pole order.
 - b. Pick new distinguished poles (keeping the order of the poles the same).
 - c. Act with $\lambda \in \overline{\mathbb{F}}_p$ as $(x, y) \mapsto (x, \lambda y)$.
- 3. Collect the possible images of $a_1, ..., a_n$ under the transformations from step 2.
- 4. Compute invariants of this ring.

Thank you!

Thank you!

Theorem [D.-Goodson-Lorenzo García-Malmskog-Scheidler '24]. There is an explicit set of reconstructing invariants for all Artin-Schreier curves of genus 3 and 4 in odd characteristic.

Theorem [D.-Lorenzo García-Malmskog-Scheidler (in progress)]. There is an algorithm to find the set of reconstructing invariants for $\mathcal{AS}_{g,s}$ in odd characteristic.

- 1. Define standard forms.
- 2. Find all possible isomorphisms to other curves in standard form. HARD!
- 3. Compute invariants of the ring. EXPENSIVE!