Local heights computations for quadratic Chabauty

Juanita Duque-Rosero Boston University

Joint work with Alexander Betts, Sachi Hashimoto, and Pim Spelier.

Rational points on curves

For this talk, C/\mathbb{Q} will be a nice curve of genus $g \ge 2$.

Theorem [Faltings, '83]. $\#C(\mathbb{Q}) < \infty$.

But how do we make it effective?

- $J := \operatorname{Jac}(C)$.
- r is the Mordell-Weil rank of J.
- *p* is a prime number.

Theorem [Chabauty, '41]. If r < g, then $\iota(C(\mathbb{Q})) \subseteq \iota(C(\mathbb{Q}_p)) \cap \overline{J(\mathbb{Q})} \subseteq J(\mathbb{Q}_p)$,

and this intersection is finite.

g=2, r=1

Quadratic Chabauty

Chabauty—Kim's Method ['05, '09]. Goal is to use p-adic methods to determine $C(\mathbb{Q})$.

good reduction.

trace 0 correspondence. Then there exists a quadratic function

 Q_7 : Lie

for which $C(\mathbb{Q})$ is contained in the locus inside $C(\mathbb{Q}_p)$ cut out by the equation

where $\Omega = \left\{ \sum h_{Z,\ell}(x_{\ell}) : x_{\ell} \in C(\mathbb{Q}_{\ell}) \right\}.$ $\ell \neq p$

- Balakrishnan–Dogra ['18, '20]. Chabauty–Kim's Program is made explicit for r = g and p of
- **Theorem [Balakrishnan–Dogra, '18]**. Suppose that $r = g (+\epsilon)$, and that $Z \subset C \times C$ is a

$$\mathrm{e}\left(J_{\mathbb{Q}_p}\right) \to \mathbb{Q}_p$$

- $Q_Z(\log(z)) h_{Z,p}(z) \in \Omega,$

Quadratic Chabauty

Chabauty—Kim's Method ['05, '09]. Goal is to use p-adic methods to determine $C(\mathbb{Q})$.

good reduction.

trace 0 correspondence. Then there exists a quadratic function

 Q_7 : Lie

for which $C(\mathbb{Q})$ is contained in the locus inside $C(\mathbb{Q}_p)$ cut out by the equation

where $\Omega = \left\{ \sum h_{Z,\ell}(x_{\ell}) : x_{\ell} \in C(\mathbb{Q}_{\ell}) \right\}.$ $\ell \neq p$

- Balakrishnan–Dogra ['18, '20]. Chabauty–Kim's Program is made explicit for r = g and p of
- **Theorem [Balakrishnan–Dogra, '18]**. Suppose that $r = g (+\epsilon)$, and that $Z \subset C \times C$ is a

$$\mathrm{e}\left(J_{\mathbb{Q}_p}\right) \to \mathbb{Q}_p$$

- $Q_Z(\log(z)) h_{Z,p}(z) \in \Omega,$

Quadratic Chabauty and heights

Key input: Let *p* be a prime number and $Z \subset C \times C$ be a trace 0 correspondence. There the associated *p*-adic (Coleman–Gross) height function $h_Z : C(\mathbb{Q}) \to \mathbb{Q}_p$ can be decomposed as $h_Z(Q) = \sum_{\ell} h_{Z,\ell}(Q),$

where $h_{Z,\ell} : C(\mathbb{Q}_{\ell}) \to \mathbb{Q}_p$.

- For $\ell \neq p$ the height function $h_{Z,\ell}(x_\ell)$ takes only finitely many values for $x_\ell \in C(\mathbb{Q}_\ell)$.
- If $\ell \neq p$ is a prime of potential good reduction, then $h_{Z,\ell}(x_\ell) = 0$ for all $x_\ell \in C(\mathbb{Q}_\ell)$.
- There is no known general explicit algorithm to compute $h_{Z,\ell}$. Quadratic Chabauty computations are done in a case-by-case basis.

Today's problem: to compute heights $h_{Z,\ell}$ for $\ell \neq p$ of bad reduction.

Explicit height computations

primes of bad reduction $\ell \neq p$ and $\ell \neq 2$.

Theorem [Betts—DR.—Hashimoto—Spelier, '23]. Let C/\mathbb{Q} be a hyperelliptic curve that admits a model $y^2 = f(x)$, where f(x) is separable and of degree ≥ 3 . Let $Z \subset C \times C$ be a trace 0 correspondence. Let *p* be a prime number. Then there is a provably correct algorithm to compute the function $h_{Z,\ell}$ for all odd

Today's problem: to compute heights $h_{Z,\ell}$ for $\ell \neq p$ of bad reduction.

Explicit height computations: how?

Assume for simplicity that C/\mathbb{Q}_{ℓ} has semistable reduction and that all components of its special fibre have genus 0.

computing the reduction of Z!)

- **Theorem [Betts—Dogra, '20]**. Let p be a prime number and $Z \subset C \times C$ be a trace 0 correspondence. Then, there is an explicit formula for computing $h_{Z,\ell}$ in terms of the induced action of Z_* on the homology $H_1(\Gamma, \mathbb{Q})$ of the dual graph Γ of the geometric special fibre. This formula uses a semistable model of C.

Today's problem: to compute the action of Z_* on $H_1(\Gamma, \mathbb{Q})$ (without

Coleman - Iovita

This allows us to understand the action of Z_* on $H^0(C_{\mathbb{Q}_{\ell}}, \Omega^1_C)$. **Theorem [Coleman & Iovita, '99]**. The map

special fibre has genus 0.

- We can represent Z as a divisor in $C \times C$ [Costa—Mascot—Sijsling—Voight, '19].

 - $H^0(C_{\mathbb{Q}_{\mathcal{A}}}, \Omega^1_C) \to H_1(\Gamma, \mathbb{Q}_{\ell}) \text{ given by } \omega \mapsto \sum \operatorname{Res}_{A_{\vec{e}}}(\omega) \cdot \vec{e}$ $e \in E(\Gamma)$
- is surjective. Moreover, the map is an isomorphism if every component of the ℓ -adic
- We can compute the action of Z_* on $H_1(\Gamma, \mathbb{Q}_\ell)$ up to any desired ℓ -adic precision.

Coleman - Iovita done explicitly

Theorem [Betts—DR—Hashimoto—Spelier, '23]. The endomorphism of d_1 and d_2 are the degrees of the two projections $Z \rightarrow C$.

Finite precision is enough!

 $H_1(\Gamma, \mathbb{Q})$ given by Z_* is defined over \mathbb{Z} , and has operator norm $\leq \sqrt{d_1 d_2}$, where

A semistable covering

Cluster picture: roots of f(x).

Semistable covering of $\mathbb{P}^{1,an}$

In general, we cannot compute semistable models of C (or work explicitly with them). Instead, we construct a semistable covering of C using cluster pictures [Best et al., '22].

> Semistable covering of C^{an}

Local heights computations: an example

What is next?

Our implementation handles any hyperelliptic curve C that:

- is given by an affine model $y^2 = f(x)$, where f(x) is separable and has even degree 1. > 3;
- does not have bad reduction at 2; 2.
- has a Jacobian with a nontrivial endomorphism. 3.

Next step: run the quadratic Chabauty method with the heights we compute.

