Local heights computations for quadratic Chabauty

Juanita Duque-Rosero
Boston University

Joint work with Alexander Betts, Sachi Hashimoto, and Pim Spelier.

Rational points on curves

For this talk, C / \mathbb{Q} will be a nice curve of genus $g \geq 2$.
Theorem [Faltings, '83]. $\# C(\mathbb{Q})<\infty$.
But how do we make it effective?

- $J:=\operatorname{Jac}(C)$.
- r is the Mordell-Weil rank of J.
- p is a prime number.

Theorem [Chabauty, '41]. If $r<g$, then

$$
l(C(\mathbb{Q})) \subseteq l\left(C\left(\mathbb{Q}_{p}\right)\right) \cap \overline{J(\mathbb{Q})} \subseteq J\left(\mathbb{Q}_{p}\right)
$$

$$
g=2, \quad r=1
$$

and this intersection is finite.

Quadratic Chabauty

Chabauty-Kim's Method ['o5, 'og]. Goal is to use p-adic methods to determine $C(\mathbb{Q})$.
Balakrishnan-Dogra ['18, '20]. Chabauty-Kim's Program is made explicit for $r=g$ and p of good reduction.

Theorem [Balakrishnan-Dogra, '18]. Suppose that $r=g(+\epsilon)$, and that $Z \subset C \times C$ is a trace 0 correspondence. Then there exists a quadratic function

$$
Q_{Z}: \operatorname{Lie}\left(J_{\mathbb{Q}_{p}}\right) \rightarrow \mathbb{Q}_{p}
$$

for which $C(\mathbb{Q})$ is contained in the locus inside $C\left(\mathbb{Q}_{p}\right)$ cut out by the equation

$$
Q_{Z}(\log (z))-h_{Z, p}(z) \in \Omega,
$$

where $\Omega=\left\{\sum_{\ell \neq p} h_{Z, \ell}\left(x_{\ell}\right): x_{\ell} \in C\left(\mathbb{Q}_{\ell}\right)\right\}$.

Quadratic Chabauty

Chabauty-Kim's Method ['o5, 'og]. Goal is to use p-adic methods to determine $C(\mathbb{Q})$.
Balakrishnan-Dogra ['18, '20]. Chabauty-Kim's Program is made explicit for $r=g$ and p of good reduction.

Theorem [Balakrishnan-Dogra, '18]. Suppose that $r=g(+\epsilon)$, and that $Z \subset C \times C$ is a trace 0 correspondence. Then there exists a quadratic function

$$
Q_{Z}: \operatorname{Lie}\left(J_{\mathbb{Q}_{p}}\right) \rightarrow \mathbb{Q}_{p}
$$

for which $C(\mathbb{Q})$ is contained in the locus inside $C\left(\mathbb{Q}_{p}\right)$ cut out by the equation

$$
Q_{Z}(\log (z))-h_{Z, p}(z) \in \Omega,
$$

where $\Omega=\left\{\sum_{\ell \neq p} h_{Z, \ell}\left(x_{\ell}\right): x_{\ell} \in C\left(\mathbb{Q}_{\ell}\right)\right\}$.

Quadratic Chabauty and heights

Key input: Let p be a prime number and $Z \subset C \times C$ be a trace 0 correspondence. There the associated p-adic (Coleman-Gross) height function $h_{Z}: C(\mathbb{Q}) \rightarrow \mathbb{Q}_{p}$ can be decomposed as

$$
h_{Z}(Q)=\sum_{\ell} h_{Z, \ell}(Q),
$$

where $h_{Z, \ell}: C\left(\mathbb{Q}_{\ell}\right) \rightarrow \mathbb{Q}_{p}$.

- For $\ell \neq p$ the height function $h_{Z, \ell}\left(x_{\ell}\right)$ takes only finitely many values for $x_{\ell} \in C\left(\mathbb{Q}_{\ell}\right)$.
- If $\ell \neq p$ is a prime of potential good reduction, then $h_{z, \ell}\left(x_{\ell}\right)=0$ for all $x_{\ell} \in C\left(\mathbb{Q}_{\ell}\right)$.
- There is no known general explicit algorithm to compute $h_{Z, \ell}$. Quadratic Chabauty computations are done in a case-by-case basis.

Today's problem: to compute heights $h_{Z, \ell}$ for $\ell \neq p$ of bad reduction.

Explicit height computations

Theorem [Betts-DR.-Hashimoto-Spelier, '23]. Let C / \mathbb{Q} be a hyperelliptic curve that admits a model $y^{2}=f(x)$, where $f(x)$ is separable and of degree ≥ 3. Let $Z \subset C \times C$ be a trace 0 correspondence. Let p be a prime number. Then there is a provably correct algorithm to compute the function $h_{Z, \ell}$ for all odd primes of bad reduction $\ell \neq p$ and $\ell \neq 2$.

Today's problem: to compute heights $h_{Z, \ell}$ for $\ell \neq p$ of bad reduction.

Explicit height computations: how?

Assume for simplicity that C / \mathbb{Q}_{ℓ} has semistable reduction and that all components of its special fibre have genus 0 .

Theorem [Betts-Dogra, '20]. Let p be a prime number and $Z \subset C \times C$ be a trace 0 correspondence. Then, there is an explicit formula for computing $h_{Z, \ell}$ in terms of the induced action of Z_{*} on the homology $\mathrm{H}_{1}(\Gamma, \mathbb{Q})$ of the dual graph Γ of the geometric special fibre. This formula uses a semistable model of C.

Today's problem: to compute the action of Z_{*} on $H_{1}(\Gamma, \mathbb{Q})$ (without computing the reduction of Z !)

Coleman-Iovita

We can represent Z as a divisor in $C \times C$ [Costa-Mascot—Sijsling-Voight, '19].
This allows us to understand the action of Z_{*} on $\mathrm{H}^{0}\left(C_{\mathbb{Q}_{\ell}}, \Omega_{C}^{1}\right)$.
Theorem [Coleman \& Iovita, '99]. The map

$$
\mathrm{H}^{0}\left(C_{\mathbb{Q}_{\ell}}, \Omega_{C}^{1}\right) \rightarrow \mathrm{H}_{1}\left(\Gamma, \mathbb{Q}_{\ell}\right) \text { given by } \omega \mapsto \sum_{e \in E(\Gamma)} \operatorname{Res}_{A_{\bar{e}}}(\omega) \cdot \vec{e}
$$

is surjective. Moreover, the map is an isomorphism if every component of the ℓ-adic special fibre has genus 0 .

We can compute the action of Z_{*} on $\mathrm{H}_{1}\left(\Gamma, \mathbb{Q}_{\ell}\right)$ up to any desired ℓ-adic precision.

Coleman-Iovita done explicitly

Theorem [Betts-DR-Hashimoto-Spelier, '23]. The endomorphism of $H_{1}(\Gamma, \mathbb{Q})$ given by Z_{*} is defined over \mathbb{Z}, and has operator norm $\leq \sqrt{d_{1} d_{2}}$, where d_{1} and d_{2} are the degrees of the two projections $Z \rightarrow C$.

Finite precision is enough!

A semistable covering

In general, we cannot compute semistable models of C (or work explicitly with them). Instead, we construct a semistable covering of C using cluster pictures [Best et al., '22].

Cluster picture: roots of $f(x)$.

Semistable covering of $\mathbb{P}^{1, \text { an }}$

Semistable covering of $C^{\text {an }}$

Local heights computations: an example

$$
C: y^{2}=x^{6}+2 x^{4}+6 x^{3}+5 x^{2}-6 x+1
$$

Properties
Label
8649.a.77841.1

We pick a correspondence $Z \subset C \times C$ with action on $H^{0}\left(X, \Omega_{X}^{1}\right)$ given by $\left(\begin{array}{cc}-1 & 2 \\ 2 & 1\end{array}\right)$.

Cluster picture

$$
h_{Z, 3}(x, y)= \begin{cases}-\frac{1}{4} \log _{p}(3) & \text { if } x \equiv-1 \bmod 3 \\ +\frac{1}{4} \log _{p}(3) & \text { if } x \equiv+1 \bmod 3 \\ 0 & \text { otherwise }\end{cases}
$$

Berkovich space decomposition

Prime Cluster picture

What is next?

Our implementation handles any hyperelliptic curve C that:

1. is given by an affine model $y^{2}=f(x)$, where $f(x)$ is separable and has even degree >3;
2. does not have bad reduction at 2 ;
3. has a Jacobian with a nontrivial endomorphism.

Next step: run the quadratic Chabauty method with the heights we compute.

