Computing local heights on hyperelliptic curves for quadratic Chabauty

Juanita Duque-Rosero
Boston University

Joint work with Alexander Betts, Sachi Hashimoto, and Pim Spelier

Theorem [Betts-DR-Hashimoto-Spelier, '24]. There are 10 (explicit) rational points on the curve

$$
C: y^{2}=x^{6}+\frac{18}{5} x^{4}+\frac{6}{5} x^{3}+\frac{9}{5} x^{2}+\frac{6}{5} x+\frac{1}{5} .
$$

Quadratic Chabauty

Chabauty-Kim's Method [' $\mathrm{o} 5, \mathrm{o} 09$]. Goal is to use p-adic methods to determine $C(\mathbb{Q})$.
Balakrishnan-Dogra ['18, '20]. Chabauty-Kim's Program is made explicit for $r=g(+\epsilon)$.
Theorem [Balakrishnan-Dogra, '18]. Suppose that $r=g(+\epsilon)$, and that $Z \subset C \times C$ is a trace 0 correspondence invariant under the Rosati involution. Then there exists a quadratic function

$$
Q_{Z}: \operatorname{Lie}\left(J_{\mathbb{Q}_{p}}\right) \rightarrow \mathbb{Q}_{p}
$$

for which $C(\mathbb{Q})$ is contained in the locus inside $C\left(\mathbb{Q}_{p}\right)$ cut out by the equation

$$
Q_{Z}(\log (z))-h_{Z, p}(z) \in \Omega,
$$

where $\Omega=\left\{\sum_{\ell \neq p} h_{Z, \ell}\left(x_{\ell}\right): x_{\ell} \in C\left(\mathbb{Q}_{\ell}\right)\right\}$.

Quadratic Chabauty

Chabauty-Kim's Method [' $\mathrm{o} 5, \mathrm{o} 09$]. Goal is to use p-adic methods to determine $C(\mathbb{Q})$.
Balakrishnan-Dogra ['18, '20]. Chabauty-Kim's Program is made explicit for $r=g(+\epsilon)$.
Theorem [Balakrishnan-Dogra, '18]. Suppose that $r=g(+\epsilon)$, and that $Z \subset C \times C$ is a trace 0 correspondence invariant under the Rosati involution. Then there exists a quadratic function

$$
Q_{Z}: \operatorname{Lie}\left(J_{\mathbb{Q}_{p}}\right) \rightarrow \mathbb{Q}_{p}
$$

for which $C(\mathbb{Q})$ is contained in the locus inside $C\left(\mathbb{Q}_{p}\right)$ cut out by the equation

$$
Q_{Z}(\log (z))-h_{Z, p}(z) \in \Omega,
$$

where $\Omega=\left\{\sum_{\ell \neq p} h_{Z, \ell}\left(x_{\ell}\right): x_{\ell} \in C\left(\mathbb{Q}_{\ell}\right)\right\}$.

Quadratic Chabauty and heights

Key input: Let p be a prime number and $Z \subset C \times C$ be a trace 0 correspondence. There the associated p-adic (Coleman-Gross) height function $h_{Z}: C(\mathbb{Q}) \rightarrow \mathbb{Q}_{p}$ can be decomposed as

$$
h_{Z}(Q)=\sum_{\ell} h_{Z, \ell}(Q)
$$

where $h_{Z, \ell}: C\left(\mathbb{Q}_{\ell}\right) \rightarrow \mathbb{Q}_{p}$.

- For $\ell \neq p$ the height function $h_{Z, \ell}$ takes only finitely many values.
- If $\ell \neq p$ is a prime of potential good reduction, then $h_{Z, \ell}=0$.
- Methods for computing $h_{Z, \ell}$ have depended on constructing a regular semistable model of C over \mathbb{Z}, which can be extremely difficult, especially as the genus or conductor of C gets large!

Today's problem: to compute heights $h_{Z, \ell}$ for $\ell \neq p$ of bad reduction.

Computing local heights: how?

- Theorem [Betts-Dogra, '20]. There is an explicit formula for computing $h_{Z, \ell}$ in terms of the induced action of Z_{*} on the homology $\mathrm{H}_{1}(\Gamma, \mathbb{Q})$ of the dual graph Γ of the geometric special fibre.
- This formula uses a semistable model of C. Instead, we construct a semistable covering of C using cluster pictures [Best et al.,'22].
- We then prove a version of the Coleman-lovita isomorphism that relates the cohomology of the reduction graph Γ associated to a semistable model C to the de Rham cohomology of C (where we compute the action of Z).

Cluster picture: roots of $f(x)$.

An example

$$
C: y^{2}=x^{6}+\frac{18}{5} x^{4}+\frac{6}{5} x^{3}+\frac{9}{5} x^{2}+\frac{6}{5} x+\frac{1}{5}
$$

- $g=r=2$.
- The Jacobian of C has real multiplication by $\sqrt{13}$.
- The primes of bad reduction are $\ell=3,5$.
$\ell=3$

An example

$$
C: y^{2}=x^{6}+\frac{18}{5} x^{4}+\frac{6}{5} x^{3}+\frac{9}{5} x^{2}+\frac{6}{5} x+\frac{1}{5}
$$

- $g=r=2$.
- The Jacobian of C has real multiplication by $\sqrt{13}$.
- The primes of bad reduction are $\ell=3,5$.
$\ell=5$
$\bullet \bullet \bullet \bullet_{1 / 2}^{1 / 2}-1 / 2$

An example (ctd.)

We can then apply the quadratic Chabauty method, together with a Mordell-Weil sieve [Balakrishnan, Dogra, Müller, Tuitman, and Vonk; Stoll]

Theorem [Betts-DR-Hashimoto-Spelier, '24]. There are 10 (explicit) rational points on the curve

$$
C: y^{2}=x^{6}+\frac{18}{5} x^{4}+\frac{6}{5} x^{3}+\frac{9}{5} x^{2}+\frac{6}{5} x+\frac{1}{5} .
$$

Available at your nearest arXiv starting today!

