Computing local heights on hyperelliptic curves for quadratic Chabauty

Juanita Duque-Rosero

Boston University

Joint work with Alexander Betts, Sachi Hashimoto, and Pim Spelier

Theorem [Betts-DR-Hashimoto-Sp points on the curve

$$C: y^2 = x^6 + \frac{18}{5}x^4 + \frac{6}{5}x^3 + \frac{9}{5}x^2 + \frac{6}{5}x + \frac{1}{5}.$$

Theorem [Betts-DR-Hashimoto-Spelier, '24]. There are 10 (explicit) rational

Quadratic Chabauty

- Chabauty—Kim's Method ['05, '09]. Goal is to use p-adic methods to determine $C(\mathbb{Q})$.
- Balakrishnan–Dogra ['18, '20]. Chabauty–Kim's Program is made explicit for $r = g (+\epsilon)$.
- **Theorem [Balakrishnan–Dogra, '18]**. Suppose that $r = g (+\epsilon)$, and that $Z \subset C \times C$ is a trace 0 correspondence invariant under the Rosati involution. Then there exists a quadratic function
 - Q_7 : Lie
- for which $C(\mathbb{Q})$ is contained in the locus inside $C(\mathbb{Q}_p)$ cut out by the equation
- where $\Omega = \left\{ \sum h_{Z,\ell}(x_{\ell}) : x_{\ell} \in C(\mathbb{Q}_{\ell}) \right\}.$ $\ell \neq p$

$$\mathrm{e}\left(J_{\mathbb{Q}_p}\right) \to \mathbb{Q}_p$$

 $Q_Z(\log(z)) - h_{Z,p}(z) \in \Omega,$

Quadratic Chabauty

- Chabauty—Kim's Method ['05, '09]. Goal is to use p-adic methods to determine $C(\mathbb{Q})$.
- Balakrishnan–Dogra ['18, '20]. Chabauty–Kim's Program is made explicit for $r = g (+\epsilon)$.
- **Theorem [Balakrishnan–Dogra, '18]**. Suppose that $r = g (+\epsilon)$, and that $Z \subset C \times C$ is a trace 0 correspondence invariant under the Rosati involution. Then there exists a quadratic function
 - Q_7 : Lie
- for which $C(\mathbb{Q})$ is contained in the locus inside $C(\mathbb{Q}_p)$ cut out by the equation
- where $\Omega = \left\{ \sum h_{Z,\ell}(x_{\ell}) : x_{\ell} \in C(\mathbb{Q}_{\ell}) \right\}.$ $\ell \neq p$

$$\mathrm{e}\left(J_{\mathbb{Q}_p}\right) \to \mathbb{Q}_p$$

 $Q_Z(\log(z)) - h_{Z,p}(z) \in \Omega,$

Quadratic Chabauty and heights

where $h_{Z,\ell} : C(\mathbb{Q}_{\ell}) \to \mathbb{Q}_{p}$.

- For $\ell \neq p$ the height function $h_{Z,\ell}$ takes only finitely many values.
- If $\ell \neq p$ is a prime of potential good reduction, then $h_{Z,\ell} = 0$.
- Methods for computing $h_{Z,\ell}$ have depended on constructing a regular semistable model of C over \mathbb{Z} , which can be extremely difficult, especially as the genus or conductor of C gets large!

Key input: Let *p* be a prime number and $Z \subset C \times C$ be a trace 0 correspondence. There the associated *p*-adic (Coleman–Gross) height function $h_Z : C(\mathbb{Q}) \to \mathbb{Q}_p$ can be decomposed as $h_Z(Q) = \sum_{\ell} h_{Z,\ell}(Q),$

Computing local heights: how?

- Theorem [Betts-Dogra, '20]. There is an explicit formula for computing $h_{Z,\ell}$ in terms of the induced action of Z_* on the homology $H_1(\Gamma, \mathbb{Q})$ of the dual graph Γ of the geometric special fibre.
- This formula uses a semistable model of C. Instead, we construct a semistable covering of *C* using cluster pictures [Best et al., '22].
- We then prove a version of the Coleman–Iovita isomorphism that relates the cohomology of the reduction graph Γ associated to a semistable model C to the de Rham cohomology of C (where we compute the action of Z).

Semistable covering of C^{an}

$$C: y^2 = x^6 + \frac{18}{5}x^2$$

•
$$g = r = 2$$
.

- The Jacobian of C has real multiplication by $\sqrt{13}$.
- The primes of bad reduction are $\ell = 3, 5$.

 $\ell = 3$

$$(\bullet \bullet \bullet)_{1/2} \bullet \bullet \bullet 5/6 _0$$

example

$$h_{Z,3}(P) = \begin{cases} 0 & \text{if } P = \infty; \\ 0 & \text{if } v_3(x) < 0; \\ 8/3 & \text{if } v_3(x-1) \ge 1; \\ 0 & \text{otherwise}. \end{cases}$$

- g = r = 2.
- The Jacobian of C has real multiplication by $\sqrt{13}$.
- The primes of bad reduction are $\ell = 3, 5$.

 $\ell = 5$ \bullet 1/2 J1/2 1/2

An example

 $h_{Z,5}(P) = \begin{cases} -3 & \text{if } P = \infty; \\ -3 & \text{if } v_5(x) < 0; \\ 3 & \text{if } v_5(x-2) \ge 1; \end{cases}$ otherwise. 0

An example (ctd.)

[Balakrishnan, Dogra, Müller, Tuitman, and Vonk; Stoll]

points on the curve

$$C: y^2 = x^6 + \frac{18}{5}x^4 + \frac{6}{5}x^3 + \frac{9}{5}x^2 + \frac{6}{5}x + \frac{1}{5}.$$

Available at your nearest arXiv starting today!

- We can then apply the quadratic Chabauty method, together with a Mordell-Weil sieve
- **Theorem [Betts-DR-Hashimoto-Spelier, '24].** There are 10 (explicit) rational

Thank you.