Triangular modular curves

Juanita Duque-Rosero
 Joint work with John Voight

DARTMOUTH

Research supported by: Simons Collaborations in the Mathematics and the Physical Sciences Award, Arithmetic geometry, number theory, and computation

Triangular modular curves

Juanita Duque-Rosero
 Joint work with John Voight

DARTMOUTH

Research supported by: Simons Collaborations in the Mathematics and the

Conjecture. For all $g \in \mathbb{Z}_{\geq 0}$, there are only finitely many admissible triangular modular curves of genus g.

- Given $a, b, c \in \mathbb{Z}_{\geq 2} \cup\{\infty\}$, a triangle group can be presented as:

$$
\Delta(a, b, c):=\left\langle\delta_{a}, \delta_{b}, \delta_{c} \mid \delta_{a}^{a}=\delta_{b}^{b}=\delta_{c}^{c}=\delta_{a} \delta_{b} \delta_{c}=1\right\rangle
$$

- There is an action of $\Delta(a, b, c)$ on \mathscr{H}.
- A triangular modular curve (TMC) is an algebraic curve given by the quotient

$$
X(1)=X(a, b, c ; 1):=\Delta(a, b, c) \backslash \mathscr{H} \simeq \mathbb{P}^{1}
$$

- Analogously to modular curves, we can define level structure
 and congruence subgroups [Clark and Voight '19].

Conjecture. For all $g \in \mathbb{Z}_{\geq 0}$, there are only finitely many admissible triangular modular curves of genus g.

- Given $a, b, c \in \mathbb{Z}_{\geq 2} \cup\{\infty\}$, a triangle group can be presented as:

$$
\Delta(a, b, c):=\left\langle\delta_{a}, \delta_{b}, \delta_{c} \mid \delta_{a}^{a}=\delta_{b}^{b}=\delta_{c}^{c}=\delta_{a} \delta_{b} \delta_{c}=1\right\rangle
$$

- There is an action of $\Delta(a, b, c)$ on \mathscr{H}.
- A triangular modular curve (TMC) is an algebraic curve given by the quotient

$$
X(1)=X(a, b, c ; 1):=\Delta(a, b, c) \backslash \mathscr{H} \simeq \mathbb{P}^{1}
$$

- Analogously to modular curves, we can define level structure
 and congruence subgroups [Clark and Voight '19].

Conjecture. For all $g \in \mathbb{Z}_{\geq 0}$, there are only finitely many admissible triangular modular curves of genus g.

Motivation

- $\Delta(2,3, \infty ; \mathfrak{p}) \cong \operatorname{PSL}_{2}\left(\mathbb{F}_{p}\right)$.
- Darmon's program '04: there is a dictionary between finite index subgroups of the triangle group $\Delta(a, b, c)$ and approaches to solve the generalized Fermat equation

$$
x^{a}+y^{b}+z^{c}=0 .
$$

- For $t \neq 0,1, \infty$, consider the family of curves:

$$
X_{t}: y^{m}=x^{e_{0}}(x-1)^{e_{1}}(x-t)^{e_{t}} .
$$

- Cohen \& Wolfart '90, Archinard 'o3: the family $\operatorname{Prym}\left(X_{t}\right)$ extends to a family of abelian varieties that are parameterized by triangular modular curves over \mathbb{P}^{1}.

Theorem [DR \& Voight]. For any $g \in \mathbb{Z}_{\geq 0}$ there are finitely many triangular modular curves $X_{0}(a, b, c ; \mathfrak{N})$ and $X_{1}(a, b, c ; \mathfrak{N})$ of genus g with nontrivial level \mathfrak{N}.
Moreover, we present an algorithm to list all such curves of a given genus.

- We first show the result for prime level [DR \& Voight '22].
- We use the Riemann-Hurwitz formula on the cover $X_{0}(a, b, c ; \mathfrak{N}) \rightarrow \mathbb{P}^{1}$.
- The monodromy of $X_{0}(a, b, c ; \mathfrak{N}) \rightarrow \mathbb{P}^{1}$ can be computed using optimal embedding numbers.
- We first need to prove the theorem for genus $g=0,1$ and the rest of the theorem follows from this.

Future work

1. Find models of TMCs of low genus and relate them to the existing database of curves in the LMFDB (at least over \mathbb{Q}).
2. Describe all rational points (over the field of definition) of TMCs.
3. Conjecture. For all $g \in \mathbb{Z}_{\geq 0}$, there are only finitely many admissible triangular modular curves of genus g.
