Local heights on hyperelliptic curves for
quadratic Chabauty.
Joint work with Alex Betts, Sachi Hashimoto, and Am Spelier.
C will be a nice curve defined over Q
smooth, projective, geowetrically irreducible.
O Rational points
Goal: C(Q).
g=genus of C.
Fix basepoint be C(Q) and
$$AJ_b: C \rightarrow J$$
.
Fix basepoint be C(Q) and $AJ_b: C \rightarrow J$.
Fattings's Theorem '83 if $g \ge 2$, then $\#C(Q) < \infty$.
• Fattings's Theorem '83 if $g \ge 2$, then $\#C(Q) < \infty$.
• When $v < g$: Chabauty '41, Coleman '85: If $g \ge 2$, then $\#C(Q)$ to
computations for $v=g$.
② Heights and quadratic Chabauty
The p-adic Nexovair height function $h_2: C(Q) \rightarrow Qp$ decomposes as
 $h_Z(Q) = \sum_{I} h_{Z,I}(Q)$
where $h_{Z,I}: C(Q_I) \rightarrow Qp$
Fods: • For $I+p$, $h_{Z,I}$ takes only finitely many values.
• If $I+p$ is op potential good reduction, then $h_{Z,I} = 0$
• $h_{Z,I}$ can be defined using interaction-pairings on a regular model.
 $h_{Z,I}(x) := (x-b) \cdot D_Z(b, x)$

• hz,p is locally analytic. Methods for compting it: (2)
Bubandhman-Besser '12, Muller '14, Bolannishman-Dogra 'ss, etc.
(A curve C/C has load reduction at p if the reduction of
(C wood p is singular
K finite extension of (R. C /K smooth projective curve
Z consepondence given by a divisor D in CxC.

$$x \in C(K)$$
 D₂(b,x):= D|_A - D|_AbjxC - D|_{Cx1x3}
C regular model D₂(b,x)CC divisor whose generic fibre is D₂(b,x).
 $h_{Z,L}(x) := (x-b) \cdot D_{Z}(b,x) \in Q$.
(* Finding explicit equations for a regular model is not great.
warring with these equations is not doable in practice.
Even in a genus 2 curve Xo(67) y² + (x³+x+1)y = x³-x, the equations
for D have degree 25.
This has not been used for quadratic Chabauty.
Example. Shimuna curve Xo(93, 1)/Wag C1: y² = x⁶ + 2x⁴ + 6x³ + 5x² - 6x + 1.
 $\int \frac{\int \int (Q ucleaturbic Chabauty) C/Q nice, g ≥ 2.
Assume that x=g, let p be a prime of good reduction.
Hz: Lie (JQp) → Qp$

for which
$$C(\Omega)$$
 is contained in the locus inside $C(\Omega_p)$ cut (3)
out by the equations $M_Z(\log(x)) - h_{Z,p}(x) \in \Omega$,
where Ω is the finite set:
 $\Omega = \left\{\sum_{l\neq p} h_{Z,l}(x_l) : x_l \in C(\Omega_l)\right\}.$

Application. [BDMTV, '19] Rational points on the "cursed curve"
$$X_{ns}(13)$$
,
non-split Cantan mod curve. genus 3.
Note: $X_{ns}(13) \simeq X_{s}(13)$.
 $X_{s}(13)$ has potential good reduction everywhere, so $h_{Z,A} = 0$ $\#L \neq p$.
(they choose p=17)
Applications to Serre's uniformity conjecture for Galois representations
of elliptic curves.

③Computing local heights
Theorem [Betts-DR-Hashimoto-Spelier, '24] let
$$C/Q$$
 be a hyperelliptic
Curve $y^2 = f(x)$ of genus $g \ge 2$. Then there is an explicit/practical
combinatorial method for computing $h_{z,\ell}$ where $l \ne p, 2$.

Der. A split semistable model is geometrically reduced + at worst double points as singularities + every component is geometrically irred, every singular pt is k-rat + tangent direc. @ singular pts are k-rational.

Reduction graph T: Given a split semistable model C · Vertices: irreducible components of the special fiber. · Edges: singular points of C. t xamples: Theorem [Betts-Dogra, '20] K finite ext. of Ql, C/K nice ZCC×C correspondence of trace O fixed by the Rosati involution. I reduction graph of a split semistable model of C. Then there is a formula for $h_{Z,l}: C(K) \rightarrow \mathbb{Q}$ that uses: $\bullet \mathsf{Z}_{*} : \mathsf{H}_{\mathsf{I}}(\mathsf{P}_{\mathsf{I}}\mathbb{Z}) \longrightarrow \mathsf{H}_{\mathsf{I}}(\mathsf{P}_{\mathsf{I}}\mathbb{Z}).$ • tr, (Z) treV(1). = 0 for genus o components. $\begin{aligned} h_{Z,l} : \mathbb{C}(K) \to \mathbb{Q} \text{ factors through a piecewise polynomial function } h_{Z,l} : T \to \mathbb{R} \\ & \left(\begin{array}{c} \text{with Laplacian} \\ \nabla^2(h_{Z,l}) = 2 \sum_{e \in \mathcal{E}(T)^+} \frac{1}{l(e)} \langle e, Z_*(\pi(e)) \rangle \cdot |d_{Se}| + \sum_{v \in V(T)} + r_v(Z) \cdot \mathcal{J}_v \right) \\ & e \in \mathcal{E}(T)^+ \\ \nabla^2(f) := -\sum_{e} (f|_e)^{"} \cdot |d_{Se}| - \sum_{v} \left(\sum_{v \in T_v(T)} D_v^{v} f(v) \right) \cdot \mathcal{J}_v. \end{aligned}$ 3 Our method. STEP 1 Cluster pictures and Semistable coverings

Split semistable semistable covering model for C Coleman Of Can the rigid-analytification Simplest conceptually Computations

is surjective. It is an isomorphism if every component of the l-adic special fiber has genus O. Lemma. The isomorphism behaves well wrt Z_{*} .

We know \mathbb{Z}_* on $H_1(\Pi, \mathbb{Q}_e)$ up to any l-adic precision.

STEP 3. Bounds
Theorem [Betts-DR-Hashimoto-Spelier '24].
Let Z be an effective correspondence of degrees di and d2.
Then
$$Z_*:H_1(T,Z) \longrightarrow H_1(T,Z)$$
 has operator norm $\leq \sqrt{d_1d_2}$.
(wrt intersection length pairing).
Then computing up to finite precision is enough!

