ENUMERATING TRIANGULAR MODULAR CURVES OF LOW GENUS

Juanita Duque-Rosero, Dartmouth College

Joint work with John Voight

April 2022, Explicit Modularity

arXiv:2203.08593

Theorem (DR & Voight, 2022)

For any $g \in \mathbb{Z}_{\geq 0}$, there are only finitely many Borel-type triangular modular curves $X_0(a, b, c; \mathfrak{N})$ and $X_1(a, b, c; \mathfrak{N})$ of genus g with nontrivial level $\mathfrak{N} \neq (1)$. The number of curves $X_0(a, b, c; \mathfrak{N})$ of genus ≤ 2 are as follows:

- 71 curves of genus 0,
- 190 curves of genus 1.
- ▶ 153 curves of genus 2.

We consider the Legendre family of elliptic curves

$$y^2 = x(x-1)(x-\lambda)$$

for a parameter $\lambda \neq 0, 1, \infty$.

- A curve in this family is a cyclic cover of P¹ branched at 4 points.
- We can parameterize the family by the modular curve $X(2) = \mathbb{P}^1$.
- One can study additional level structure by considering covers of X(2), specifying extra data such as a cyclic N-isogeny or an N-torsion point.

Fundamental domain for Γ(2), by Paul Kainberger.

We consider the family of curves

$$X_t: y^m = x^{e_0}(x-1)^{e_1}(t-x)^{e_t},$$

where $t \neq 0, 1, \infty$.

- A curve in this family is a cyclic cover of \mathbb{P}^1 branched at 4 points.
- ► X_t has a cyclic group of automorphisms of order m, defined over $\mathbb{Q}(\zeta_m)$, given by $\alpha : (x, y) \mapsto (x, \zeta_m y)$.
- We study Prym(X_t), an isogeny factor of Jac(X_t) where α acts by a primitive *m*-th root of unity.

By work of Cohen & Wolfart (1990), triangular modular curves parameterize the varieties $Prym(X_t)$.

4

For $a, b, c \in \mathbb{Z}_{\geq 2} \cup \{\infty\}$, let $\Delta(a, b, c)$ be the **triangle group** with presentation

$$\Delta = \Delta(a, b, c) \coloneqq \langle \delta_a, \delta_b, \delta_c | \delta_a^a = \delta_b^b = \delta_c^c = \delta_a \delta_b \delta_c = 1 \rangle.$$

The triple $(a, b, c) \in (\mathbb{Z}_{\geq 2} \cup \{\infty\})^3$ is hyperbolic if and only if

$$\frac{1}{a} + \frac{1}{b} + \frac{1}{c} - 1 < 0.$$

Escher, Angels and Demons.

We now fix a hyperbolic triple $(a, b, c) \in \mathbb{Z}_{\geq 2} \cup \{\infty\}$.

Theorem (Takeuchi, 1977)

There is an embedding

 $\Delta \hookrightarrow \mathrm{SL}_2(\mathbb{R})$

that can be given explicitly in terms of the functions $sin(\pi/s)$ and $cos(\pi/s)$. This embedding is unique up to conjugacy in $SL_2(\mathbb{R})$.

The quotient

$$X(1) := \Delta \setminus \mathcal{H}$$

is a complex Riemannian 1-orbifold of genus zero. We call this quotient a **triangular modular curve (TMC)**.

Let p be a rational prime with $p \nmid 2abc$. We consider the tower of fields

Remark: $2 \cos\left(\frac{2\pi}{s}\right) = \zeta_s + 1/\zeta_s$, where $\zeta_s := \exp(2\pi i/s)$.

There is a homomorphism

$$\phi_{\mathfrak{P}}: \Delta \to \mathrm{PSL}_2(\mathbb{Z}_F/\mathfrak{P})$$

We let the subgroup $\Delta(\mathfrak{p})$ be the subgroup given by ker $\phi_{\mathfrak{P}} \subseteq \Delta$.

Theorem (Clark & Voight, 2019)

Let (a, b, c) be a hyperbolic triple with $a, b, c \in \mathbb{Z}_{\geq 2} \cup \{\infty\}$. Let \mathfrak{p} be a prime of E with residue field $\mathbb{F}_{\mathfrak{p}}$ and suppose $\mathfrak{p} \nmid 2abc$. Then there exists a G-Galois Belyi map $X(\mathfrak{p}) \to \mathbb{P}^1$ with ramification indices (a, b, c), where

$$G = \begin{cases} PSL_2(\mathbb{F}_p), & \text{if } p \text{ splits completely in } F; \\ PGL_2(\mathbb{F}_p), & \text{otherwise.} \end{cases}$$

Remark: The genus of X(p) is given by

$$g(X(\mathfrak{p})) = 1 + \frac{\#G}{2} \left(1 - \frac{1}{a} - \frac{1}{b} - \frac{1}{c} \right).$$

Analogously, we obtain curves $X(\mathfrak{N}) := \Delta(\mathfrak{N}) \setminus \mathcal{H}$ for every ideal \mathfrak{N} of E.

Recall the homomorphism

 $\phi_{\mathfrak{N}}: \Delta \to \mathrm{PSL}_2(\mathbb{Z}_F/\mathfrak{N}\mathbb{Z}_F),$

and that $\Delta(\mathfrak{N}) := \ker \phi_{\mathfrak{N}}$.

Define the subgroups,

$$H_0 := \left\{ \begin{pmatrix} * & * \\ 0 & * \end{pmatrix} \right\}, \qquad \qquad H_1 := \left\{ \begin{pmatrix} 1 & * \\ 0 & 1 \end{pmatrix} \right\} \subseteq \operatorname{PSL}_2(\mathbb{Z}_F/\mathfrak{N}\mathbb{Z}_F),$$

$$\Gamma_0(\mathfrak{N}) := \phi_{\mathfrak{N}}^{-1}(H_0), \qquad \qquad \Gamma_1(\mathfrak{N}) := \phi_{\mathfrak{N}}^{-1}(H_1) \qquad \subseteq \qquad \Delta.$$

We define the curves

$$X_0(\mathfrak{N}) := \Gamma_0(\mathfrak{N}) \setminus \mathcal{H}, \qquad \qquad X_1(\mathfrak{N}) := \Gamma_1(\mathfrak{N}) \setminus \mathcal{H}.$$

Then we have maps

$$X(\mathfrak{N}) \to X_1(\mathfrak{N}) \to X_0(\mathfrak{N}) \to X(1).$$

Example

We consider the triple $(a, b, c) = (2, 3, \infty)$. In this case we have that $\mathbb{Q} = E = F$ and $\operatorname{SL}_2(\mathbb{Z}) \cong \Delta(2, 3, \infty)$. By construction, $X(2, 3, \infty; N) = X(N)$.

Example

Let $p \ge 5$ be a prime. We consider hyperbolic triples of the form (2, 3, c) with $c = p^k$ and $k \ge 1$. Then $X(2, 3, p^k; p) \cong X(2, 3, p; p)$.

Definition

An ideal $\mathfrak{N} \subseteq \mathbb{Z}_{\mathbb{E}}$ is *admissible* for (a, b, c) if \mathfrak{N} is nonzero and the following two conditions hold:

- 1. \mathfrak{N} is coprime to $\beta(a, b, c)$, and
- 2. if $\mathfrak{p} \mid \mathfrak{N}$ is a prime lying above $p \in \mathbb{Z}$, and $p \mid s$ for $s \in \{a, b, c\}$, then p = s.

Lemma

Let p be an odd prime and p be a prime of E above p. Let p be admissible for (a, b, c) and let $q = p^r$ be such that $\mathbb{F}_p = \mathbb{F}_q$. Then the genus of the curve $X_0(p)$ is given by

$$2g-2 = -2(q+1) + k_a(a-1) + k_b(b-1) + k_c(c-1),$$

where

$$k_{s} = \begin{cases} \frac{q-1}{s} & s|(q-1), \\ \frac{q}{s} & s|q, \\ \frac{q+1}{s} & s|(q+1). \end{cases}$$

Corollary

Let p be an odd prime and p be a prime of E above p. Let p be admissible for (a, b, c) and let $q = p^r$ be such that $\mathbb{F}_p = \mathbb{F}_q$. Then,

$$g(X_0(\mathfrak{p})) \geq \frac{q-1}{2} \left(1 - \frac{1}{a} - \frac{1}{b} - \frac{1}{c}\right) - 1.$$

If (a, b, c) is a hyperbolic triple, we have

$$1 - \frac{1}{a} - \frac{1}{b} - \frac{1}{c} \ge \frac{1}{42}.$$

Then, for a fixed g_0 ,

$$q \le 82g_0 + 1.$$

Theorem (DR & Voight, 2022)

For any $g \in \mathbb{Z}_{\geq 0}$, there are only finitely many Borel-type triangular modular curves $X_0(a, b, c; \mathfrak{N})$ and $X_1(a, b, c; \mathfrak{N})$ of genus g with nontrivial level $\mathfrak{N} \neq (1)$. The number of curves $X_0(a, b, c; \mathfrak{N})$ of genus ≤ 2 are as follows:

- 71 curves of genus 0,
- 190 curves of genus 1.
- ▶ 153 curves of genus 2.

This algorithm returns a list *lowGenus* of all hyperbolic triples (a, b, c), primes p and Galois groups $PSL_2(\mathbb{F}_q)$ or $PGL(\mathbb{F}_q)$ such that the genus of $X_0(a, b, c; p)$ is less than g_0 .

- 1. Loop over the list of possible powers $q = p^r$, where p is any rational prime and $q \le 84(g_0 + 1) + 1$.
- 2. For each q, find all hyperbolic triples (a, b, c) for which \mathfrak{p} is (a, b, c)-admissible with $\mathbb{F}_{\mathfrak{p}} = \mathbb{F}_{q}$.
- 3. For each such triple (a, b, c), compute the genus g of $X_0(a, b, c; \mathfrak{p})$. If $g \leq g_0$, add (a, b, c; p, q) to the list *lowGenus*.

- Address the existence of triangular modular curves (and their genera) without the admissibility hypothesis.
- ▶ Find models and compute rational points of TMCs of low genus.
- Study TMCs for all congruence subgroups of triangle groups.

Code is available at GitHub.

CURVES $X_0(a, b, c; \mathfrak{p})$ of genus 0

(a, b, c)	p	(n		(a, b, c)	n	(a, b, c)	n
(2, 3, 7)	7		1, 0, 0)	<u> </u>	-	(u, v, c)	<u> </u>	(u, b, c)	P
(2 3 7)	2	(2	<u>2, 4, 5)</u>	5	-	(3,3,4)	/	$(2, 4, \infty)$	5
(2, 3, 7)	12	(2	2, 4, 5)	3		(3,3,4)	3	$(2, 5, \infty)$	5
(2,3,7)	13	(2	2, 4, 5)	11	-	(3, 3, 4)	5	$(2,5,\infty)$	3
(2,3,7)	29		2/(5)	/1	-	(3 3 5)	2	$(2.6.\infty)$	7
(2, 3, 7)	43		$\frac{1}{2}, \frac{1}{3}, \frac{1}{3}$	-	-	(3, 3, 3)	40	$(2, 0, \infty)$	~
(2, 3, 8)	7	_(2	2,4,6)	5	-	(3, 3, 6)	13	$(2, 8, \infty)$	3
(2, 3, 3)	2	(2	2, 4, 6)	7		(3,3,7)	7	$(2,\infty,\infty)$	3
(2, 5, 6)	3	(2	2, 4, 6)	13	-	(3, 4, 4)	5	$(2,\infty,\infty)$	5
(2, 3, 8)	1/	$-\frac{1}{C}$	248)	3	-	(3 4 4)	13	$(3,3,\infty)$	3
(2, 3, 8)	5		(, +, 0)	17	-	(3, 4, 4)	7	$(3,3,\infty)$	7
(2, 3, 9)	19		2,4,8)	1/	-	(3, 6, 6)	/	$(3,3,\infty)$	/
(2, 3, 9)	37	(2	, 4, 12)	13		(4, 4, 4)	3	$(3, 4, \infty)$	3
(2, 3, 9)	57	(2	2, 5, 5)	5	-	(4, 4, 5)	5	$(3,7,\infty)$	2
(2, 3, 10)	11	$-\dot{c}$	255)	11	-	$(2,3,\infty)$	2	(3.15∞)	2
(2,3,10)	31	- (2	-, 0, 0) F 10)	11	-	(2,3,50)	2	(3, 13, 50)	2
(2, 3, 12)	13	(2	, 5, 10)		-	$(2,3,\infty)$	3	$(3,\infty,\infty)$	2
(2 3 12)	5	(2	2,6,6)	/		(2,3,∞)	5	$(3,\infty,\infty)$	3
(2, 3, 12)	12	(2	2, 6, 6)	13		$(2,3,\infty)$	7	$(4, 4, \infty)$	5
(2, 3, 13)	13	(2	2.6.7)	7	-	$(2,3,\infty)$	13	$(4,\infty,\infty)$	3
(2, 3, 15)	2) <u>8</u> 8)	3	-	$(2, 4, \infty)$	3	(2,23,30)	3
(2, 3, 18)	19	(2	2,0,0)	5		(2, 4, ∞)	1.2	(ω, ω, ω)	5