ENUMERATING TRIANGULAR MODULAR CURVES OF LOW GENUS

Juanita Duque-Rosero, Dartmouth College
Joint work with John Voight
April 2022, Explicit Modularity
arXiv:2203.08593

MAIN RESULT

Theorem (DR \& Voight, 2022)
For any $g \in \mathbb{Z}_{\geq 0}$, there are only finitely many Borel-type triangular modular curves $X_{0}(a, b, c ; \mathfrak{N})$ and $X_{1}(a, b, c ; \mathfrak{N})$ of genus g with nontrivial level $\mathfrak{N} \neq(1)$. The number of curves $X_{0}(a, b, c ; \mathfrak{N})$ of genus ≤ 2 are as follows:

- 71 curves of genus 0 ,
- 190 curves of genus 1 .
- 153 curves of genus 2 .

Motivation: elliptic curves

We consider the Legendre family of elliptic curves

$$
y^{2}=x(x-1)(x-\lambda)
$$

for a parameter $\lambda \neq 0,1, \infty$.

- A curve in this family is a cyclic cover of \mathbb{P}^{1} branched at 4 points.
- We can parameterize the family by the modular curve $X(2)=\mathbb{P}^{1}$.
- One can study additional level structure by considering covers of $X(2)$, specifying extra data such as a cyclic N-isogeny or an N-torsion point.

Fundamental domain for $\Gamma(2)$, by Paul Kainberger.

We consider the family of curves

$$
x_{t}: y^{m}=x^{e_{0}}(x-1)^{e_{1}}(t-x)^{e_{t}},
$$

where $t \neq 0,1, \infty$.

- A curve in this family is a cyclic cover of \mathbb{P}^{1} branched at 4 points.
- X_{t} has a cyclic group of automorphisms of order m, defined over $\mathbb{Q}\left(\zeta_{m}\right)$, given by $\alpha:(x, y) \mapsto\left(x, \zeta_{m} y\right)$.
- We study $\operatorname{Prym}\left(X_{t}\right)$, an isogeny factor of $\operatorname{Jac}\left(X_{t}\right)$ where α acts by a primitive m-th root of unity.

By work of Cohen \& Wolfart (1990), triangular modular curves parameterize the varieties $\operatorname{Prym}\left(X_{t}\right)$.

TriAngle groups

For $a, b, c \in \mathbb{Z}_{\geq 2} \cup\{\infty\}$, let $\Delta(a, b, c)$ be the triangle group with presentation

$$
\Delta=\Delta(a, b, c):=\left\langle\delta_{a}, \delta_{b}, \delta_{c} \mid \delta_{a}^{a}=\delta_{b}^{b}=\delta_{c}^{c}=\delta_{a} \delta_{b} \delta_{c}=1\right\rangle
$$

The triple $(a, b, c) \in\left(\mathbb{Z}_{\geq 2} \cup\{\infty\}\right)^{3}$ is hyperbolic if and only if

$$
\frac{1}{a}+\frac{1}{b}+\frac{1}{c}-1<0
$$

Escher, Angels and Demons.

We now fix a hyperbolic triple $(a, b, c) \in \mathbb{Z}_{\geq 2} \cup\{\infty\}$.

TRIANGULAR MODULAR CURVES

Theorem (Takeuchi, 1977)

There is an embedding

$$
\Delta \hookrightarrow \mathrm{SL}_{2}(\mathbb{R})
$$

that can be given explicitly in terms of the functions $\sin (\pi / s)$ and $\cos (\pi / s)$. This embedding is unique up to conjugacy in $\mathrm{SL}_{2}(\mathbb{R})$.

The quotient

$$
X(1):=\Delta \backslash \mathcal{H}
$$

is a complex Riemannian 1-orbifold of genus zero. We call this quotient a triangular modular curve (TMC).

Level structure

Let p be a rational prime with $p \nmid 2 a b c$. We consider the tower of fields

Remark: $2 \cos \left(\frac{2 \pi}{s}\right)=\zeta_{s}+1 / \zeta_{s}$, where $\zeta_{s}:=\exp (2 \pi i / s)$.
There is a homomorphism

$$
\phi_{\mathfrak{F}}: \Delta \rightarrow \operatorname{PSL}_{2}\left(\mathbb{Z}_{\mathfrak{F}} / \mathfrak{P}\right)
$$

We let the subgroup $\Delta(\mathfrak{p})$ be the subgroup given by $\operatorname{ker} \phi_{\mathfrak{F}} \subseteq \Delta$.

Theorem (Clark \& Voight, 2019)

Let (a, b, c) be a hyperbolic triple with $a, b, c \in \mathbb{Z}_{\geq 2} \cup\{\infty\}$. Let \mathfrak{p} be a prime of E with residue field $\mathbb{F}_{\mathfrak{p}}$ and suppose $\mathfrak{p} \nmid 2 a b c$. Then there exists a G -Galois Belyi map $X(\mathfrak{p}) \rightarrow \mathbb{P}^{1}$ with ramification indices (a, b, c), where

$$
G= \begin{cases}\operatorname{PSL}_{2}\left(\mathbb{F}_{\mathfrak{p}}\right), & \text { if } \mathfrak{p} \text { splits completely in } \mathrm{F}_{;} \\ \operatorname{PGL}_{2}\left(\mathbb{F}_{\mathfrak{p}}\right), & \text { otherwise. }\end{cases}
$$

Remark: The genus of $X(\mathfrak{p})$ is given by

$$
g(X(\mathfrak{p}))=1+\frac{\# G}{2}\left(1-\frac{1}{a}-\frac{1}{b}-\frac{1}{c}\right) .
$$

Analogously, we obtain curves $X(\mathfrak{N}):=\Delta(\mathfrak{N}) \backslash \mathcal{H}$ for every ideal \mathfrak{N} of E.

Congruence subgroups

Recall the homomorphism

$$
\phi_{\mathfrak{N}}: \Delta \rightarrow \mathrm{PSL}_{2}\left(\mathbb{Z}_{\mathrm{F}} / \mathfrak{N Z}_{\mathrm{F}}\right)
$$

and that $\Delta(\mathfrak{N}):=\operatorname{ker} \phi_{\mathfrak{N}}$.
Define the subgroups,

$$
\begin{array}{ll}
H_{0}:=\left\{\left(\begin{array}{ll}
* & * \\
0 & *
\end{array}\right)\right\}, & H_{1}:=\left\{\left(\begin{array}{ll}
1 & * \\
0 & 1
\end{array}\right)\right\} \quad \subseteq \quad \operatorname{PSL}_{2}\left(\mathbb{Z}_{F} / \mathfrak{N Z}_{F}\right), \\
\Gamma_{0}(\mathfrak{N}):=\phi_{\mathfrak{N}}^{-1}\left(H_{0}\right), & \Gamma_{1}(\mathfrak{N}):=\phi_{\mathfrak{N}}^{-1}\left(H_{1}\right) \quad \subseteq \Delta .
\end{array}
$$

We define the curves

$$
X_{0}(\mathfrak{N}):=\Gamma_{0}(\mathfrak{N}) \backslash \mathcal{H}, \quad X_{1}(\mathfrak{N}):=\Gamma_{1}(\mathfrak{N}) \backslash \mathcal{H}
$$

Then we have maps

$$
X(\mathfrak{N}) \rightarrow X_{1}(\mathfrak{N}) \rightarrow X_{0}(\mathfrak{N}) \rightarrow X(1)
$$

Example

We consider the triple $(a, b, c)=(2,3, \infty)$. In this case we have that $\mathbb{Q}=E=F$ and $\mathrm{SL}_{2}(\mathbb{Z}) \cong \Delta(2,3, \infty)$. By construction, $X(2,3, \infty ; N)=X(N)$.

Example

Let $p \geq 5$ be a prime. We consider hyperbolic triples of the form $(2,3, c)$ with $c=p^{k}$ and $k \geq 1$. Then $X\left(2,3, p^{k} ; p\right) \cong X(2,3, p ; p)$.

Definition

An ideal $\mathfrak{N} \subseteq \mathbb{Z}_{E}$ is admissible for (a, b, c) if \mathfrak{N} is nonzero and the following two conditions hold:

1. \mathfrak{N} is coprime to $\beta(a, b, c)$, and
2. if $\mathfrak{p} \mid \mathfrak{N}$ is a prime lying above $p \in \mathbb{Z}$, and $p \mid s$ for $s \in\{a, b, c\}$, then $p=s$.

THE GENUS OF $X_{0}(\mathfrak{p})$

Lemma

Let p be an odd prime and \mathfrak{p} be a prime of E above p. Let \mathfrak{p} be admissible for (a, b, c) and let $q=p^{r}$ be such that $\mathbb{F}_{\mathfrak{p}}=\mathbb{F}_{q}$. Then the genus of the curve $X_{0}(\mathfrak{p})$ is given by

$$
2 g-2=-2(q+1)+k_{a}(a-1)+k_{b}(b-1)+k_{c}(c-1)
$$

where

$$
k_{s}= \begin{cases}\frac{q-1}{s} & s \mid(q-1) \\ \frac{q}{s} & s \mid q \\ \frac{q+1}{s} & s \mid(q+1)\end{cases}
$$

Corollary

Let p be an odd prime and \mathfrak{p} be a prime of E above p. Let \mathfrak{p} be admissible for (a, b, c) and let $q=p^{r}$ be such that $\mathbb{F}_{\mathfrak{p}}=\mathbb{F}_{q}$. Then,

$$
g\left(X_{0}(\mathfrak{p})\right) \geq \frac{q-1}{2}\left(1-\frac{1}{a}-\frac{1}{b}-\frac{1}{c}\right)-1 .
$$

If (a, b, c) is a hyperbolic triple, we have

$$
1-\frac{1}{a}-\frac{1}{b}-\frac{1}{c} \geq \frac{1}{42}
$$

Then, for a fixed g_{0},

$$
q \leq 82 g_{0}+1
$$

MAIN RESULT

Theorem (DR \& Voight, 2022)
For any $g \in \mathbb{Z}_{\geq 0}$, there are only finitely many Borel-type triangular modular curves $X_{0}(a, b, c ; \mathfrak{N})$ and $X_{1}(a, b, c ; \mathfrak{N})$ of genus g with nontrivial level $\mathfrak{N} \neq(1)$. The number of curves $X_{0}(a, b, c ; \mathfrak{N})$ of genus ≤ 2 are as follows:

- 71 curves of genus 0 ,
- 190 curves of genus 1 .
- 153 curves of genus 2 .

This algorithm returns a list lowGenus of all hyperbolic triples (a, b, c), primes p and Galois groups $\operatorname{PSL}_{2}\left(\mathbb{F}_{q}\right)$ or $\operatorname{PGL}\left(\mathbb{F}_{q}\right)$ such that the genus of $X_{0}(a, b, c ; p)$ is less than g_{0}.

1. Loop over the list of possible powers $q=p^{r}$, where p is any rational prime and $q \leq 84\left(g_{0}+1\right)+1$.
2. For each q, find all hyperbolic triples (a, b, c) for which \mathfrak{p} is (a, b, c)-admissible with $\mathbb{F}_{\mathfrak{p}}=\mathbb{F}_{q}$.
3. For each such triple (a, b, c), compute the genus g of $X_{0}(a, b, c ; \mathfrak{p})$. If $g \leq g_{0}$, add ($a, b, c ; p, q$) to the list lowGenus.

- Address the existence of triangular modular curves (and their genera) without the admissibility hypothesis.
- Find models and compute rational points of TMCs of low genus.
- Study TMCs for all congruence subgroups of triangle groups.

Code is available at GitHub.

(a, b, c)	p
$(2,3,7)$	7
$(2,3,7)$	2
$(2,3,7)$	13
$(2,3,7)$	29
$(2,3,7)$	43
$(2,3,8)$	7
$(2,3,8)$	3
$(2,3,8)$	17
$(2,3,8)$	5
$(2,3,9)$	19
$(2,3,9)$	37
$(2,3,10)$	11
$(2,3,10)$	31
$(2,3,12)$	13
$(2,3,12)$	5
$(2,3,13)$	13
$(2,3,15)$	2
$(2,3,18)$	19

(a, b, c)	p
$(2,4,5)$	5
$(2,4,5)$	3
$(2,4,5)$	11
$(2,4,5)$	41
$(2,4,6)$	5
$(2,4,6)$	7
$(2,4,6)$	13
$(2,4,8)$	3
$(2,4,8)$	17
$(2,4,12)$	13
$(2,5,5)$	5
$(2,5,5)$	11
$(2,5,10)$	11
$(2,6,6)$	7
$(2,6,6)$	13
$(2,6,7)$	7
$(2,8,8)$	3

(a, b, c)	p
$(3,3,4)$	7
$(3,3,4)$	3
$(3,3,4)$	5
$(3,3,5)$	2
$(3,3,6)$	13
$(3,3,7)$	7
$(3,4,4)$	5
$(3,4,4)$	13
$(3,6,6)$	7
$(4,4,4)$	3
$(4,4,5)$	5
$(2,3, \infty)$	2
$(2,3, \infty)$	3
$(2,3, \infty)$	5
$(2,3, \infty)$	7
$(2,3, \infty)$	13
$(2,4, \infty)$	3

(a, b, c)	p
$(2,4, \infty)$	5
$(2,5, \infty)$	5
$(2,5, \infty)$	3
$(2,6, \infty)$	7
$(2,8, \infty)$	3
$(2, \infty, \infty)$	3
$(2, \infty, \infty)$	5
$(3,3, \infty)$	3
$(3,3, \infty)$	7
$(3,4, \infty)$	3
$(3,7, \infty)$	2
$(3,15, \infty)$	2
$(3, \infty, \infty)$	2
$(3, \infty, \infty)$	3
$(4,4, \infty)$	5
$(4, \infty, \infty)$	3
(∞, ∞, ∞)	3

