Triangular modular curves of low genus

Juanita Duque-Rosero

Joint work with John Voight

AMS Special Session on Latinx and Hispanics in Combinatorics, Number Theory, Geometry and Topology

October 2022

Triangular modular curves of low genus

Juanita Duque-Rosero

Joint work with John Voight

AMS Special Session on Latinx and Hispanics in Combinatorics, Number Theory, Geometry and Topology

October 2022

I am on the job market!

Triangle groups

Examples

$(2,3,6)$

$(2,3,4)$

Triangle groups

Definition

Let $a, b, c \in \mathbb{Z}_{\geq 2} \cup\{\infty\}$. The triangle group is a group with presentation:
$\Delta(a, b, c):=\left\langle\delta_{a}, \delta_{b}, \delta_{c} \mid \delta_{a}^{a}=\delta_{b}^{b}=\delta_{c}^{c}=\delta_{a} \delta_{b} \delta_{c}=1\right\rangle$

We only consider hyperbolic triangles. This is the triple (a, b, c) is hyperbolic:

$$
\chi(a, b, c):=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}-1<0
$$

Triangle groups

Definition

Let $a, b, c \in \mathbb{Z}_{\geq 2} \cup\{\infty\}$. The triangle group is a group with presentation:
$\Delta(a, b, c):=\left\langle\delta_{a}, \delta_{b}, \delta_{c} \mid \delta_{a}^{a}=\delta_{b}^{b}=\delta_{c}^{c}=\delta_{a} \delta_{b} \delta_{c}=1\right\rangle$

We only consider hyperbolic triangles. This is the triple (a, b, c) is hyperbolic:

$$
\chi(a, b, c):=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}-1<0
$$

Triangular modular curves

There is an embedding

$$
\Delta \hookrightarrow \operatorname{PSL}_{2}(\mathbb{R})
$$

That can be explicitly given by square roots, $\sin (\pi / s)$ and $\cos (\pi / s)$ for $s \in\{a, b, c\}$.

There is an action of $\mathrm{PSL}_{2}(\mathbb{R})$ on the (completed) upper-half complex plane \mathscr{H} :

$$
\left(\begin{array}{ll}
s & t \\
u & v
\end{array}\right) \cdot z=\frac{s z+t}{u z+v} .
$$

Escher: Angels and Devils

Triangular modular curves

Construction

A triangular modular curve is an algebraic curve given by the quotient $X(1)=X(a, b, c ; 1):=\Delta(a, b, c) \backslash \mathscr{H}$

Triangular modular curves

Construction

> A triangular modular curve is an algebraic curve given by the quotient $X(1)=X(a, b, c ; 1):=\Delta(a, b, c) \backslash \mathscr{H}$

By construction $X(a, b, c ; 1) \simeq \mathbb{P}^{1}$, so the curves have genus 0 for all (a, b, c).

Do we care?

Consider the Legendre family of elliptic curves:

$$
E_{t}: y^{2}=x(x-1)(x-t)
$$

for a parameter $t \neq 0,1, \infty$.

- Cyclic covers of \mathbb{P}^{1} branched at 4 points.
- Parametrized by the modular curve $X(2)=\mathbb{P}^{1}$.
- We can consider additional level structure. Example: specify a cyclic N -isogeny ($X_{0}(N)$) or an N-torsion point $\left(X_{1}(N)\right.$).

Fundamental domain of $\Gamma(2)$. By Paul Kainberger.

Generalizing elliptic curves

Consider the family of curves:

$$
X_{t}: y^{m}=x^{e_{0}}(x-1)^{e_{1}}(x-t)^{e_{t}}
$$

with $t \neq 0,1, \infty$.

- Cyclic covers of \mathbb{P}^{1} that are branched at 4 points.
- X_{t} has a cyclic group of automorphisms of order m defined over $\mathbb{Q}\left(\zeta_{m}\right)$.
- $\operatorname{Prym}\left(X_{t}\right)$ an isogeny factor of $\operatorname{Jac}\left(\mathrm{X}_{\mathrm{t}}\right)$.
[Cohen \& Wolfart '90, Archinard '03] The family Prym $\left(X_{t}\right)$ extends to a family of abelian varieties over \mathbb{P}^{1} that are parameterized by triangular modular curves.

Why triangular modular curves?

[Cohen \& Wolfart '90, Archinard '03] The family Prym $\left(X_{t}\right)$ extends to a family of abelian varieties over \mathbb{P}^{1} that are parameterized by triangular modular curves.

Darmon's program ('04): there is a dictionary between finite index subgroups of the triangle group $\Delta(a, b, c)$ and approaches to solve the generalized Fermat equation

$$
x^{a}+y^{b}+z^{c}=0 .
$$

Level structure

Let p be a prime with $p \nmid 2 a b c$. We consider the number field

$$
E=E(a, b, c):=\mathbb{Q}\left(\cos \left(\frac{2 \pi}{a}\right), \cos \left(\frac{2 \pi}{b}\right), \cos \left(\frac{2 \pi}{c}\right), \cos \left(\frac{\pi}{a}\right) \cos \left(\frac{\pi}{b}\right) \cos \left(\frac{\pi}{c}\right)\right) .
$$

Let \mathfrak{p} / p be a prime of E. There is a surjective homomorphism

$$
\pi_{\mathfrak{p}}: \Delta \rightarrow \mathrm{PXL}_{2}\left(\mathbb{Z}_{E} / \mathfrak{p}\right)
$$

We can decide between PSL_{2} and PGL_{2} from the behavior of \mathfrak{p} in an extension of E.

Congruence subgroups

$$
\pi_{\mathfrak{p}}: \Delta \rightarrow \mathrm{PXL}_{2}\left(\mathbb{Z}_{E} / \mathfrak{p}\right)
$$

The principal congruence subgroup of level \mathfrak{p} is:

$$
\Gamma(\mathfrak{p}):=\operatorname{ker} \pi_{\mathfrak{p}} \unlhd \Delta
$$

The triangular modular curve of level \mathfrak{p} is:

$$
X(\mathfrak{p})=X(a, b, c ; \mathfrak{p}):=\Gamma(\mathfrak{p}) \backslash \mathscr{H}
$$

These curves come with an associated Belyi map:

$$
X(a, b, c ; \mathfrak{p}) \rightarrow X(a, b, c ; 1) \simeq \mathbb{P}^{1}
$$

Example: $\left(2,3,7 ; \mathfrak{p}_{7}\right)$

We understand the cover $X\left(2,3,7 ; \mathfrak{p}_{7}\right) \rightarrow \mathbb{P}^{1}$:

- The degree is ${\# \operatorname{PSL}_{2}\left(\mathbb{F}_{7}\right)=168 \text {, }}_{\text {, }}$
- It is ramified over 0,1 and ∞,
- Every ramification point above each 0,1 and ∞ has the same degree $(s \in\{a, b, c\})$.

Now we apply this to the Riemann-Hurwitz formula:

$$
2 g-2=-2 \cdot d+\sum_{P} e_{P}
$$

Example: $\left(2,3,7 ; \mathfrak{p}_{7}\right)$

We understand the cover $X\left(2,3,7 ; \mathfrak{p}_{7}\right) \rightarrow \mathbb{P}^{1}$:

- The degree is ${\# P_{S L}}_{2}\left(\mathbb{F}_{7}\right)=168$,
- It is ramified over 0,1 and ∞.
- Every ramification point above each 0,1 and ∞ has the same degree $(s \in\{a, b, c\})$.
Now we apply this to the Riemann-Hurwitz formula:

$$
2 g-2=-2 \cdot 168+\frac{168}{2} \cdot(2-1)+\frac{168}{3} \cdot(3-1)+\frac{168}{7} \cdot(7-1)
$$

So $g=3$.

Congruence subgroups

Bore kind

Let $H_{0} \leq \mathrm{PXL}_{2}\left(\mathbb{Z}_{E} / \mathfrak{p}\right)$ be the image of the upper triangular matrices in $\mathrm{XL}_{2}\left(\mathbb{Z}_{E} / \mathfrak{p}\right)$.

$$
\Gamma_{0}(\mathfrak{p})=\Gamma_{0}(a, b, c ; \mathfrak{p}):=\pi_{\mathfrak{p}}^{-1}\left(H_{0}\right)
$$

We define the TMC with level \mathfrak{p} :

$$
X_{0}(\mathfrak{p})=X_{0}(a, b, c ; \mathfrak{p}):=\Gamma_{0}(\mathfrak{p}) \backslash \mathscr{H} .
$$

$$
X(\mathfrak{p}) \rightarrow X_{0}(\mathfrak{p}) \rightarrow X(1)
$$

The maps to $X(1)$ are Belyi maps!
We can also construct $X_{1}(a, b, c ; \mathfrak{p})$ and we get

$$
X(\mathfrak{p}) \rightarrow X_{1}(\mathfrak{p}) \rightarrow X_{0}(\mathfrak{p}) \rightarrow X(1)
$$

XP)

Main theorem

Theorem [DR \& Voight '22]

For any $g \in \mathbb{Z}_{\geq 0}$ there are finitely many Borel-type triangular modular curves $X_{0}(a, b, c ; \mathfrak{p})$ of genus g with nontrivial prime level \mathfrak{p}. The number of curves $X_{0}(a, b, c ; \mathfrak{p})$ of genus $g \leq 2$ are as follows:

- 69 curves of genus 0 ;
- 248 curves of genus 1 ;
- 453 curves of genus 2 .

$$
\text { We have a similar result for } X_{1}(a, b, c ; \mathfrak{p})
$$

A bound on the number of TMCs of bounded genus

Theorem [DR \& Voight '22]. Let $g_{0} \geq 0$ be the genus of $X_{0}(a, b, c ; \mathfrak{p})$. Recall that $q:=\# \mathfrak{F}_{\mathfrak{p}}$. Then

$$
q \leq \frac{2\left(g_{0}+1\right)}{|-1 / 42|}+1 .
$$

In particular the number of TMCs $X_{0}(a, b, c ; \mathfrak{p})$ of genus g_{0} is finite.

We obtain an explicit formula for the genus

$$
g\left(X_{0}(a, b, c ; \mathfrak{p})\right) .
$$

Ramification

Lemma. Let $G=\operatorname{PXL}_{2}\left(\mathbb{F}_{q}\right)$ with $q=p^{r}$ for p prime. (a, b, c) is a hyperbolic admissible triple. Let $\sigma_{s} \in G$ have order $s \geq 2$ and if $s=2$ suppose $p=2$.
Then the action of σ_{s} on G / H_{0} has:

$$
\text { orbits of length } s \text { and }\left\{\begin{array}{l}
0 \text { fixed points if } s \mid(q+1) \\
1 \text { fixed point if } s=p, \\
2 \text { fixed points if } s \mid(q-1)
\end{array}\right.
$$

In particular s must divide one between $q+1, p, q+1$ for all $s \in\{a, b, c\}$ and we understand the ramification of the cover

$$
X_{0}(\mathfrak{p}) \rightarrow \mathbb{P}^{1}
$$

Enumeration algorithm

Input: $g_{0} \in \mathbb{Z}_{\geq 0}$.
Output: A list of $(a, b, c ; p)$ such that $X_{0}(a, b, c ; \mathfrak{p})$ has genus bounded by g_{0} where \mathfrak{p} is a prime of $E(a, b, c)$ of norm p.

1. Generate a list of possible q values.
2. For each q find all q-admissible hyperbolic triples (a, b, c).
3. Compute the genus g of $X_{0}(a, b, c ; \mathfrak{p})$ by checking divisibility.
4. If $g \leq g_{0}$ add $(a, b, c ; p)$ to the list lowGenus.

Future work

Compute explicit formulas for composite level.
Find models using Belyi maps and compute rational points of TMCs of low genus. [Klug, Musty, Schiavone \& Voight, '14].
Example: the curve $X_{0}\left(3,3,4 ; \mathfrak{p}_{7}\right)$ is defined over the number field k with defining polynomial $x^{4}-2 x^{3}+x^{2}-2 x+1$. We have

$$
X_{0}\left(3,3,4 ; \mathfrak{p}_{7}\right) \simeq \mathbb{P}_{k}^{1}
$$

Conjecture. For all $g \in \mathbb{Z}_{\geq 0}$, there are only finitely many admissible triangular modular curves of genus g of nontrivial level $\mathfrak{N} \neq(1)$ with $\Delta(a, b, c)$ maximal.

Output for $X_{0}(a, b, c ; p)$ of genus 0

2	3	∞	3
2	3	∞	5
2	4	∞	3
2	∞	∞	3
3	3	∞	3
3	∞	∞	2
3	∞	∞	3
∞	∞	∞	3

