A geometric quadratic Chabauty computation on $X_{0}(67)^{+}$

Juanita Duque-Rosero and Sachi Hashimoto joint work with Pim Spelier

Simons collaboration meeting, September 11, 2021

Our goal

Motivation:

We want to apply the geometric quadratic Chabauty of
Edixhoven and Lido method to find an upper bound for the number of rational points on $X_{0}(67)^{+}=X_{0}(67) /\left\langle w_{67}\right\rangle$.
Let X be the weighted homogenization of

$$
y^{2}+\left(x^{3}+x+1\right) y=x^{5}-x .
$$

Fact: X is a regular model for $X_{0}(67)^{+}$over \mathbb{Z}.

Proposition

The integer points $X(\mathbb{Z})$ reducing to $(0,-1) \in X\left(\mathbb{F}_{7}\right)$ are contained in the set

$$
\left\{(0,-1),\left(4 \cdot 7+O\left(7^{2}\right), 6+O\left(7^{2}\right)\right)\right\}
$$

Note: $X(\mathbb{Q})=X(\mathbb{Z})$.
$X(\mathbb{Q})$ has been determined by Balakrishnan, Best, Bianchi, Lawrence, Müller, Triantafillou, and Vonk.

Overview

J / \mathbb{Z} Néron model for the Jacobian of X,
T a \mathbb{G}_{m}-torsor over J,
$j_{b}: X^{\mathrm{sm}} \rightarrow J$ Abel-Jacobi at basepoint $b=(1,0) \in X(\mathbb{Z})$.
Note: $X(\mathbb{Q})=X(\mathbb{Z})=X^{\mathrm{sm}}(\mathbb{Z})$.

"Chabauty's Theorem"

"Chabauty's Theorem"*
$\widetilde{j_{b}}\left(X^{\mathrm{sm}}\left(\mathbb{Z}_{p}\right)\right) \cap \overline{T(\mathbb{Z})} \subset T\left(\mathbb{Z}_{p}\right)$ is finite.
*This is neither a theorem, nor Chabauty's.
Work residue disk by residue disk. Consider disk of $P=(0,-1)$.

Strategy

Our strategy:

- Construct a homeomorphism $\varphi: T\left(\mathbb{Z}_{p}\right)_{\tilde{j}_{b}(\bar{P})} \rightarrow \mathbb{Z}_{p}^{3}$ given by convergent power series
- Compute the embedding $\widetilde{j_{b}}: X^{\mathrm{sm}} \rightarrow T\left(\mathbb{Z}_{p}\right)_{\tilde{j}_{b}}(\bar{P})$ via a section
- Give a map $\kappa: \mathbb{Z}_{p}^{2} \rightarrow T\left(\mathbb{Z}_{p}\right)_{\tilde{j}_{b}(\bar{P})}$ with image $\overline{T(\mathbb{Z})}{\widetilde{\tilde{j}_{b}}(\bar{P})}$
- Intersect $\varphi \circ \kappa$ and $\varphi \circ \widetilde{j_{b}}$ in \mathbb{Z}_{p}^{3}
- A Hensel-like lemma implies that precision p^{2} is enough

Construction of T

We need an nontrivial trace 0 endomorphism $f: J \rightarrow J$. We use an element of the Hecke algebra of J.

We pull back the universal \mathbb{G}_{m}-torsor \mathcal{M}^{\times}over $J \times J$ by $(1, \alpha)$ where $\alpha=\operatorname{tr}_{c} \circ f$ and c is uniquely determined so that $T:=(1, \alpha)^{*} \mathcal{M}^{\times}$over J is trivial over X.

We compute equations for a correspondence $D_{f} \subset X \times X$ inducing the endomorphism f, using the code of Costa, Mascot, Sijsling, and Voight.

One of the challenging aspects is to work with the divisor

$$
A_{\alpha}:=D_{f}-\left.D_{f}\right|_{X \times b} \times X+X \times\left. D_{f}\right|_{X \times b}-X \times\left. D_{f}\right|_{\Delta}
$$

explicitly.

The equations for D

[7605023584402176072496*x^8*u^2 + 276848668324194788374*x^8*u + 2162467398048698636700*x^7*u^2 $6272554892698832692599 * x^{\wedge} \wedge * y * u \wedge 2-4626446567682633747828 * x^{\wedge} 8 * v-1168446771586826201673 * x^{\wedge} 8-$ $9165162915676858733619 * x^{\wedge} 7 * u+2241777840578137196064 * x^{\wedge} 6 * y * u-8418141092008037071834 * x^{\wedge} 6 * u^{\wedge} 2-$ $13292836185052144419762 * x^{\wedge} 5 * y * u^{\wedge} 2+754031123597981360894 * x^{\wedge} 7 * v+6328906343710703634915 * x^{\wedge} 6^{*} * y * v+$ $2615195628519325252191 * x^{\wedge} 7+1831262799801461507208 * x^{\wedge} 6 * y+2756070458250784948869 * x^{\wedge} 6 * u+15428857376010803153841 * x^{\wedge} 5 * y * u$ $-11784051570902048135703 * x^{\wedge} 5 * \mathrm{u}^{\wedge} 2-7230872538984499657093 * x^{\wedge} 4 * \mathrm{y} * \mathrm{u}^{\wedge} 2+16912156368781966844899 * \mathrm{x}^{\wedge} 6 * \mathrm{~V}+$ $8794134244461097697655 * x^{\wedge} 5 * y * v+13382241469127150196465 * x^{\wedge} 6+4082469582390924565047 * x^{\wedge} 5 * y+$ $21852540598540798087489 * x^{\wedge} 5 * u+13245519579554143163167 * x^{\wedge} 4 * y * u-22985066915160029536074 * x^{\wedge} 4 * u^{\wedge} 2-$ $23255128704790712417887 * x^{\wedge} 3 * y * u^{\wedge} 2+13682822171560412185605 * x^{\wedge} 5 * v-165783020433170604550 * x^{\wedge} 4 * y * v-$ $6931902302166164206278 * x^{\wedge} 5-5083451259029072420619 * x^{\wedge} 4 * y-11826350429569203951840 * x^{\wedge} 4 * u-$
$19199699515311811452213 * x^{\wedge} 3 * y * u-28484484698745046075669 * x^{\wedge} 3 * u \wedge 2-17690076715222265602489 * x^{\wedge} 2 * y * u^{\wedge} 2+$
$17805473443696348827856 * x^{\wedge} 4 * \mathrm{v}+675202808346140479378 * \mathrm{x}^{\wedge} 3 * \mathrm{y} * \mathrm{v}+6675814886892603310402 * x^{\wedge} 4+5577161777751351740903 * x^{\wedge} 3 * \mathrm{y}$ $+19969878692979973055652 * x^{\wedge} 3 * u+18120117063433135735083 * x^{\wedge} 2 * * \mathrm{y} * \mathrm{u}+936713375105971953531 * \mathrm{x}^{\wedge} \wedge 2 * \mathrm{u}^{\wedge} 2+$ $11466853454037386066020 * x * y * u \wedge 2+10542523972242190209720 * x^{\wedge} 3 * \mathrm{v}+8824421921807720328364 * \mathrm{x}^{\wedge} 2 * \mathrm{y} * \mathrm{v}+$
$11877160806671853672804 * x^{\wedge} 3+13363913247174903062953 * x^{\wedge} 2 * \mathrm{y}+14059453652617340471247 * x^{\wedge} 2 * u+$
$10218057833893227356605 * x * y * u-308361787245220032444 * x * u^{\wedge} 2-5322779956111165805354 * y * u \wedge 2+5505912629321680476560 * x^{\wedge} 2 * v$ $-4290695327689320279111 * \mathrm{x} * \mathrm{y} * \mathrm{v}-7612900075627672207215 * \mathrm{x}^{\wedge} 2-14312446660999532149696 * \mathrm{x} * \mathrm{y}+4434640084437900284987 * \mathrm{x} * \mathrm{u}+$ $3704885128833955385271 * \mathrm{y} * \mathrm{u}-993796068912520397282 * \mathrm{u}^{\wedge} 2+57535042100777081983 * \mathrm{x} * \mathrm{v}+3829830430486931582408 * \mathrm{y} * \mathrm{v}+$ $5885803647094172346013 * y+960790192851544016507 * u+281506727438003913980 * v+113825130829311801917$, $790135714013668417211 * x^{\wedge} 8 * u^{\wedge} 2-52199251698889313788 * x^{\wedge} 8 * u+445626397822123380960 * x^{\wedge} 7 * u^{\wedge} 2$
$484065148072652139393 * x^{\wedge} 6 * y * u^{\wedge} 2-355589770017865569639 * x^{\wedge} 8 * v-97839554801178078020 * x^{\wedge} 8-678398566039036992539 * x^{\wedge} 7 * u+$ $155198586393263487818 * x^{\wedge} 6 *$ y*u $-113052264818131543479 * x^{\wedge} 6 * u^{\wedge} 2-874765196307671212424 * x^{\wedge} \wedge * y * u^{\wedge} 2+$
$50893236050896468243 * x^{\wedge} 7 * v+549806068461932423405 * x^{\wedge}{ }^{\wedge} * y * v+245852373764948827027 * x^{\wedge} 7+222973665578085376766 * x^{\wedge} 6 * y-$ $186006391998859651031 * x^{\wedge}$ ^* $u+918135020900189841469 * x^{\wedge} 5 * \mathrm{y} * \mathrm{u}-523150712434256670561 * \mathrm{x}^{\wedge} 5 * \mathrm{u}^{\wedge} 2$ -
$328927822772590067729 * x^{\wedge} 4 * y * u^{\wedge} 2+1388867642711454788442 * x^{\wedge} 6 * v+882684613081080621057 * x^{\wedge} 5 * y * v+$
$1142791546745352334216 * x^{\wedge}{ }^{\wedge}+533732004549278022010 * x^{\wedge} \wedge * y+394464353147344850914 * x^{\wedge} 5 * u+874586564270896523236 * x^{\wedge} 4 * y * u-$ $1503623861758469781638 * x^{\wedge} 4 * u^{\wedge} 2-1118256877330123036794 * x^{\wedge} 3 * \mathrm{y} * \mathrm{u}^{\wedge} 2+962253617070423872834 * \mathrm{x}^{\wedge} 5 * \mathrm{v}+$
$260675420287904377496 * x^{\wedge} 4 * y * v-73108557049802456668 * x^{\wedge} 5-177841514864980758518 * x^{\wedge} 4 * y-1357965873921914116106 * x^{\wedge} 4 * u-$ $1595337468013963640622 * x^{\wedge} 3 * y * u-1882558303840937888797 * x^{\wedge} 3 *{ }^{*} \wedge 2-1293922634022119677492 * x^{\wedge} 2 * y * u \wedge 2+$
$1390753692690189767706 * x^{\wedge} 4 * v+246438908010171275168 * x^{\wedge}{ }^{\wedge} 3 * y * v+793691222208583979104 * x^{\wedge} 4+499223278514256382778 * x^{\wedge}{ }^{\wedge} 3 * y+$ $645256167770372257021 * x^{\wedge} 3 * u+984786145000107598929 * x^{\wedge} 2 * y * u-280718524673749556697 * x^{\wedge} 2 * u^{\wedge} 2+$
$779933023636684223799 * x * y * u^{\wedge} 2+842189446494471065427 * x^{\wedge} 3 * v+558551444022004233780 * x^{\wedge} 2 * \mathrm{y} * \mathrm{v}+913241896994237593431 * x^{\wedge} 3+$ $1244963363551342949690 * x^{\wedge} 2 * \mathrm{y}+727117765460043207926 * x^{\wedge} 2 * \mathrm{u}+1012441030923028187282 * \mathrm{x} * \mathrm{y} * \mathrm{u}-21753359867708939458 * \mathrm{x} * \mathrm{u} \wedge 2-$ $344942106360625888966 * y * u \wedge 2+353025200232170583936 * x \wedge 2 * v-211033121948623991455 * x * y * v-163875785683850219832 * x^{\wedge} 2-$ $617198754625174179093 * x * y+597830134728356122829 * x * u+169901861802716830954 * y * u-82203224665107226192 * u^{\wedge} 2+$ $82310455430799619016 * x * v+191169787322405231086 * y * v+341475392487935405751 * x+350318508927358217032 * y-$ $21028731891073941584 * u-9558514495942700720 * v, x^{\wedge} 5-x^{\wedge} 3 * y-x * y-y^{\wedge} 2-x-y, u^{\wedge} 5-u^{\wedge} 3 * v-u * v-v^{\wedge} 2-u-v$, $1120 * x^{\wedge} 20 * u^{\wedge} 4-2068 * x^{\wedge} 20 * u^{\wedge} 3+8124 * x^{\wedge} 19 * u^{\wedge} 4+2407 * x^{\wedge} 20 * u^{\wedge} 2-16894 * x^{\wedge} 19 * u^{\wedge} 3+35279 * x^{\wedge} 18 * u^{\wedge} 4-1641 * x^{\wedge} 20 * u+$ $18092 * x^{\wedge} 19 * u^{\wedge} 2-67012 * x^{\wedge} 18 * u^{\wedge} 3+102591 * x^{\wedge} 17 * u^{\wedge} 4+378 * x^{\wedge} 20-8178 * x^{\wedge} 19 * u+58447 * x^{\wedge} 18 * u^{\wedge} 2-173283 * x^{\wedge} 17 * u^{\wedge} 3+$ $216476 * x^{\wedge} 16 * \mathrm{u}^{\wedge} 4+774 * \mathrm{x}^{\wedge} 19-14247 * \mathrm{x}^{\wedge} 18 * \mathrm{u}+103331 * \mathrm{x}^{\wedge} 17 * \mathrm{u}^{\wedge} 2-297137 * \mathrm{x}^{\wedge} 16 * \mathrm{u}^{\wedge} 3+334741 * \mathrm{x}^{\wedge} 15 * \mathrm{u}^{\wedge} \wedge+1458 * \mathrm{x}^{\wedge} 18-31130 * \mathrm{x}^{\wedge} 17 * \mathrm{u}$ $+180514 * x^{\wedge} 16 * u^{\wedge} 2-358567 * x^{\wedge} 15 * u^{\wedge} 3+360468 * x^{\wedge} 14 * u^{\wedge} 4+10605 * x^{\wedge} 17-90380 * x^{\wedge} 16 * u+290195 * x^{\wedge} 15 * u^{\wedge} 2-395289 * x^{\wedge} 14 * u^{\wedge} 3+$ $240873 * x^{\wedge} 13 * u^{\wedge} 4+20415 * x^{\wedge} 16-159334 * x^{\wedge} 15 * u+394529 * x^{\wedge} 14 * u^{\wedge} 2-407100 * x^{\wedge} 13 * u^{\wedge} 3+44248 * x^{\wedge} 12 * u^{\wedge} 4+22701 * x^{\wedge} 15-$ $112959 * x^{\wedge} 14 * u+418497 * x^{\wedge} 13 * u^{\wedge} 2-493887 * x^{\wedge} 12 * u^{\wedge} 3-105112 * x^{\wedge} 11 * u^{\wedge} 4+25606 * x^{\wedge} 14-115611 * x^{\wedge} 13 * u+111265 * x^{\wedge} 12 * u^{\wedge} 2-$ $417580 * x^{\wedge} 11 * u^{\wedge} 3-92961 * x^{\wedge} 10 * u^{\wedge} 4+1092 * x^{\wedge} 13-103527 * x^{\wedge} 12 * u+145152 * x^{\wedge} 11 * u^{\wedge} 2-88490 * x^{\wedge} 10 * u^{\wedge} 3-92811 * x^{\wedge} 9 * u^{\wedge} 4+$ $48856 * x^{\wedge} 12+186438 * x^{\wedge} 11 * u+267721 * x^{\wedge} 10 * u^{\wedge} 2-155622 * x^{\wedge} 9 * u^{\wedge} 3-45395 * x^{\wedge} 8 * u^{\wedge} \wedge^{4}-27776 * x^{\wedge} 11-191295 * x^{\wedge} 10 * u-$ $\left.178159 * x^{\wedge} 9 * u^{\wedge} 2-70489 * x^{\wedge} 8 * u^{\wedge} 3+16905 * x^{\wedge} \wedge * u^{\wedge} 4-61956 * x^{\wedge} 10-74059 * x^{\wedge} 9 * u+378244 * x^{\wedge} 8 * u^{\wedge}\right)^{\wedge} 2+232801 * x^{\wedge} 7 * u^{\wedge} 3+$ $15979 * x^{\wedge} 6 * u^{\wedge} 4+74366 * x^{\wedge} 9+338472 * x^{\wedge} 8 * u+227589 * x^{\wedge} 7 * u^{\wedge} 2-74613 * x^{\wedge} \wedge^{\wedge} * u^{\wedge} 3-16012 * x^{\wedge} 5 * u^{\wedge} 4-87675 * x^{\wedge} 8-182672 * x^{\wedge} 7 * u-$ $189206 * x^{\wedge} 6 * u^{\wedge} 2+26802 * x^{\wedge} 5 * u^{\wedge} 3+25133 * x^{\wedge} 4 * u^{\wedge} 4-85989 * x^{\wedge} 7-42976 * x^{\wedge} 6 * u+119160 * x^{\wedge} 5 * u^{\wedge} 2+38380 * x^{\wedge} 4 * u^{\wedge} 3-14569 * x^{\wedge} 3 * u^{\wedge} 4$ $+57369 * x^{\wedge} 6+50376 * x^{\wedge} 5 * u-22878 * x^{\wedge} 4 * u^{\wedge} 2-26236 * x^{\wedge} 3 * u^{\wedge} 3+5653 * x^{\wedge} 2 * u^{\wedge} 4-19638 * x^{\wedge} 5-66959 * x^{\wedge} 4 * u+10199 * x^{\wedge} 3 * u^{\wedge} 2+$ $7737 * x^{\wedge} 2 * u^{\wedge} 3-1185 * x * u^{\wedge} 4-18109 * x^{\wedge} 4+33891 * x^{\wedge} 3 * u-10338 * x^{\wedge} 2 * u^{\wedge} 2+126 * x * u^{\wedge} 3+90 * u^{\wedge} 4+8894 * x^{\wedge} 3-13882 * x^{\wedge} \wedge * u+$ $\left.3365 * x * u^{\wedge} 2-189 * u^{\wedge} 3-1493 * x^{\wedge} 2+903 * x * u-105 * u^{\wedge} 2-176 * x+18 * u+4\right]$

Describing T

Let $p>2$.
To work with the residue disks of T, we construct a homeomorphism $\varphi: T\left(\mathbb{Z}_{p}\right)_{\tilde{j}_{b}}(\bar{P}) \rightarrow \mathbb{Z}_{p}^{3}$ given by convergent power series.
This map factors through a homomorphism from $\mathcal{M}^{\times}\left(\mathbb{Q}_{p}\right)$ to the trivial biextension $\mathbb{Q}_{p}^{2} \times \mathbb{Q}_{p}^{2} \times \mathbb{Q}_{p}$, which can be written using p-adic heights.

In this trivial biextension, the section $\widetilde{j_{b}}(z)$ is

$$
\left(\log ([z-b]), \log \left(\left[\left.A_{\alpha}\right|_{z \times X}\right]\right), h_{p}\left(z-b,\left.A_{\alpha}\right|_{z \times X}\right)\right) \in \mathbb{Q}_{p}^{2} \times \mathbb{Q}_{p}^{2} \times \mathbb{Q}_{p}
$$

Working in the trivial biextension makes our computations much easier. The hard part will be computing $h_{p}\left(z-b,\left.A_{\alpha}\right|_{z \times X}\right)$.

Embedding the curve

Let $p=7$.
Recall $\varphi: T\left(\mathbb{Z}_{p}\right)_{\tilde{j_{b}}(\bar{P})} \rightarrow \mathbb{Z}_{p}^{3}$ is our constructed homeomorphism.

Proposition

Let $\mathbb{Z}_{p} \rightarrow X\left(\mathbb{Z}_{p}\right)_{\bar{P}}$ be the parametrization of the residue disk with parameter equal to the x-coordinate. Define the map $\lambda: \mathbb{Z}_{p} \rightarrow T\left(\mathbb{Z}_{p}\right)_{\tilde{j}_{b}}(\bar{P})$ to be the composition of this parametrization $\mathbb{Z}_{p} \rightarrow X\left(\mathbb{Z}_{p}\right)_{\bar{P}}$ and $\widetilde{j_{b}}$. Then the map $\varphi \circ \lambda$ is given by convergent power series and modulo p is

$$
\nu \mapsto(2 \nu, 0,6-\nu) .
$$

Computing $\widetilde{j_{b}}$

To get $\lambda \bmod p$, we parametrize

$$
\begin{aligned}
\{0, \ldots, p-1\} & \rightarrow X\left(\mathbb{Z} / p^{2} \mathbb{Z}\right)_{\bar{P}} \\
\nu & \mapsto P_{\nu}:=(\nu p,-1) .
\end{aligned}
$$

To compute $\widetilde{j_{b}}\left(P_{\nu}\right)$, we will compute $\widetilde{j_{b}}\left(P_{0}\right)$ and $\widetilde{j_{b}}\left(P_{1}\right)$ and interpolate.
An easier calculation shows $\varphi \circ \widetilde{j_{b}}\left(P_{0}\right)=(0,0,6)$. We discuss $\varphi \circ \widetilde{j_{b}}\left(P_{1}\right)$ the more general example.

Local heights

Recall: the hard part of finding $\varphi \circ \widetilde{j}_{b}\left(P_{1}\right)$ is computing $H:=h_{p}\left(P_{1}-b,\left.A_{\alpha}\right|_{P_{1} \times X}\right)$.

Sage and Magma have an implementation of local heights based on an algorithm by Balakrishnan and Besser.

Implementation requires $\left.A_{\alpha}\right|_{P_{1} \times X}$ can be written as a sum of \mathbb{Q}_{p}-points, which is not possible.

Local heights cont.

Over $\mathbb{Z} / p^{2} \mathbb{Z}$, we have $\left.A_{\alpha}\right|_{P_{1} \times X}=\left.D_{f}\right|_{P_{1} \times X}+\left.D_{f}\right|_{b \times X}-\left.D_{f}\right|_{\Delta}$. Using "explicit Cantor's algorithm" (with code by Sutherland) we can write

$$
\left.2 D_{f}\right|_{P_{1} \times X}=\sum_{i} Q_{i}+\operatorname{Div} g_{1}
$$

Over \mathbb{Q} we have

$$
\left.D_{f}\right|_{b \times X}-\left.D_{f}\right|_{\Delta}=\sum_{j} R_{j}+\operatorname{Div} g_{2}
$$

Altogether:

$$
\begin{aligned}
H= & 1 / 2 h_{p}\left(P_{1}-b, \sum_{i} Q_{i}+2 \sum_{j} R_{j}\right) \\
& +1 / 2 \log \left(g_{1}\left(P_{1}-b\right)\right)+\log \left(g_{2}\left(P_{1}-b\right)\right) .
\end{aligned}
$$

Yields $\varphi\left(\widetilde{j_{b}}\left(P_{1}\right)\right)=(2,0,5)$.

Integer points on T

We construct a map $\kappa: \mathbb{Z}_{p}^{2} \rightarrow T\left(\mathbb{Z}_{p}\right)_{\tilde{j_{b}}(\bar{P})}$ with image exactly $\overline{T(\mathbb{Z})}{\widetilde{\tilde{j}_{b}}(\bar{P})}$.

Proposition

Recall the bijection $\varphi: T\left(\mathbb{Z}_{p}\right)_{\tilde{j_{b}}(\bar{P})} \rightarrow \mathbb{Z}_{p}^{3}$. The map $\varphi \circ \kappa: \mathbb{Z}_{p}^{2} \rightarrow \mathbb{Z}_{p}^{3}$ is given by convergent power series, and modulo p is given by

$$
\left(n_{1}, n_{2}\right) \mapsto\left(n_{1},-n_{1}-2 n_{2},-3 n_{1}^{2}-n_{1} n_{2}-n_{1}+n_{2}-1\right) .
$$

We use the biextension structure to construct many integer points in $T(\mathbb{Z})$ lying over integer points in $J(\mathbb{Z})$.

An upper bound

Recall that modulo p

$$
\begin{aligned}
(\varphi \circ \kappa)\left(n_{1}, n_{2}\right) & =\left(n_{1},-n_{1}-2 n_{2},-3 n_{1}^{2}-n_{1} n_{2}-n_{1}+n_{2}-1\right) \\
(\varphi \circ \lambda)(\nu) & =(2 \nu, 0,6-\nu)
\end{aligned}
$$

Intersect $\widetilde{j_{b}}\left(X\left(\mathbb{Z} / p^{2} \mathbb{Z}\right)_{\bar{P}}\right)$ and $T\left(\mathbb{Z} / p^{2} \mathbb{Z}\right)_{\tilde{j}_{b}}(\bar{P})$. Get two solutions:

$$
\left(\nu, n_{1}, n_{2}\right) \in\{(0,0,0),(4,1,3)\}
$$

Proposition

The integer points $X(\mathbb{Z})$ reducing to $(0,-1) \in X\left(\mathbb{F}_{7}\right)$ are contained in the set

$$
\left\{(0,-1),\left(4 \cdot 7+O\left(7^{2}\right), 6+O\left(7^{2}\right)\right)\right\}
$$

