

Outline:
Products and Fibred Products
Limits
Extension of scalars
Restriction of scalars
Transporters (Group Actions)
Galois Descent (?)

Note: k is a commutative ring

Recall: An affine group corresponds to a functor $G: Alg_{\kappa} \longrightarrow Grp$ such that the associated forgetful functor $Alg_{\kappa} \longrightarrow Set$ is representable. Products

A Infinite products of <u>affine</u> algebraic groups do not exist in general. <u>closed</u> subgroup of GLn

Special case: Let
$$\alpha, \beta: G \rightarrow H$$
 be hom. of
affine grps. Then
Eq $(\alpha, \beta) := G \times_{\alpha, H, \beta} G$
is the equilizer of α and β .
Special case: $\alpha: G \rightarrow H$ hom. of affine grps.
Ker $(\alpha) := Eq(\alpha, e) = G \times_{H} *$
is the kernel of α .

Coordinate ring?
Hom
$$O(H)$$
-alg. $(O(G_1) \times O(H) \cup (G_2), R)$
Is
Hom $O(H)$ -alg $(O(G_1), R) \times Hom O(H)$ -alg $(O(G_2), R)$
Hom k -alg $(O(G_1) \times O(H) \cup (G_2), R)$
IS
Hom k -alg $(O(G_1), R) \times Hom k$ -alg $(O(H), R)$

Limits

Theorem: Let F be a functor from a small
(3.1) category I to the category of affine
groups over k. Then the functor
$$R \sim Im F(R)$$

is an affine group, and it is the inverse
limit of F in the category of affine groups.

Extension of Scalars
k' is a k-algebra.
If R is a k'-algebra, then it is a k-algebra:

$$k \rightarrow k' \rightarrow R$$

If G: Alg_k \rightarrow Grp is an affine k-group, then the functor:
 $G_{k'}: R \longrightarrow G(R)$
is the extension of scalars of G.
Coordinate ring?
Hom_{k'-alg} (k'&A, R) \simeq thom_{k-alg}(A, R)
Then $O(G_{k'}) = k' \otimes O(G)$
Example: V projective f.g k-mod
W k'-algebra
* Da(V): R ~ (Hom_{k-lin}(V, R), +)
r
k-alg

$$\operatorname{Hom}_{k-alg}(\operatorname{Sym}(V), R) \simeq \operatorname{Hom}_{k-lin}(V, R)$$

* k-linear map $V \longrightarrow W'$ Lextend k'-linear map $V \otimes k' \longrightarrow W'$ $D_a(V)_k : R \longrightarrow Hom_{k-lin}(V,R)$ $II \qquad IS$ $D_a(V_k): R \longrightarrow Hom_{k'-lin}(V \otimes k',R)$

Corollarg: G~~~ (G) K'/k is right adgoint to Gik

(3) k' is a k-algebra K is a k-algebra $(\operatorname{Res}_{k'/k}G)_{K} \simeq \operatorname{Res}_{(k'\otimes_{k}K)}(G_{K})$

(4)
$$k' = k_1 \times \dots \times k_n$$
, k_i is a k -algebra that is
f.g and proj. as a k -mod.
(G) $k'_{k} \simeq (G)_{k'_{k}} \times \dots \times (G)_{k_{n'_{k}}}$.
(5) k field, k' finite separable ext. of k .
K field containing all k -conj. of k'
($|\text{Hom}_{k}(k', \kappa)| = [k', k]$)
Then ($\text{Res}_{k'_{k}}G'_{k} \simeq \prod_{\alpha': k' \to \kappa} \alpha G'_{\alpha}$, $k' \in (k', k)$)

Actions and Transporters

G be an affine monoid over k. Let Let X be a functor : $Alg_k \longrightarrow Set$ An action of G on X is a natural transformation $G \times X \longrightarrow X$ such that $G(R) \times X(R) \longrightarrow X(R)$ is an action of G(R) on X(R) for all k-algebras R. Y, Z subfunctors of X. The transporter of Y into Z is the functor $T_G(Y,Z): R \longrightarrow \{g \in G(R) \mid g Y \subseteq Z \}$ $9Y(R') \subseteq Z(R') \forall R-alg. R'.$ Is the transporter an affine group? Not in general. We need: Y representable by a k-alg. free as k-mad • 7 closed in X

Let Z be a subfunctor of a functor Y: $Alg_k \rightarrow Set$. We say that Z is closed if, for every k-alg. A and natural transformation $h^{A} \rightarrow Y$, the fibred product $Z \times_{Y} h^{*}$ is represented by a quotient of A. 0r... Z is closed in Y if and only if, for every k-alg. A and $x \in Y(A)$, the functor (of k-alg) $R \longrightarrow \{ \mathcal{U} : A \longrightarrow R \mid \mathcal{U}(\mathcal{A}) \in \mathcal{Z}(A) \}$ is represented by a quotient of A. Example: Y is the functor $A^n = (R \longrightarrow R^n)$. Then a subfunctor is closed iff it is defined by a finite set of polynomials in k[x,..,xn]

Galois descent of affine groups

k field Λ/k Galois ext. $\Pi = Gal(\Lambda/k)$

Prop. The functor $G \longrightarrow G_{\Omega}$ from affine groups over k to affine groups over Ω equipped with a continuous action of Π is an equivalence of categories.

Example.
$$G = G_{m}$$
 $k = iR$ $k' = C$
Extension: $G_{m} \land Ig_{R} \rightarrow G_{rP}$
 $G_{m} \land Ig_{C} \rightarrow G_{rP}$
 $A \longrightarrow G_{m}(A) = A^{x}$
Restriction: $(G_{m}) c_{/R}(A) \longrightarrow G_{m}(C \otimes_{R} A)$
 $R \sim Old G_{m}(C \otimes_{R} R) = C^{x}$
 $G_{m}(C \otimes_{R} C) = C^{x} c^{x}$
 $((G_{m}) c_{/R})_{C} = Res_{C \otimes_{R} C/C} (G_{m} c)$
 $Res_{C/C} (G_{m} c) \times Res_{C/C} (G_{m} c)$
 $G_{m} c \times G_{m} c$