Fermat Quotients, Contruction and Applications

Juanita Duque-Rosero
Colorado State University

November 16, 2019

Fermat curves

$F: x^{p}+y^{p}=z^{p}$

Quotients of Fermat curves
$F_{k}: v^{p}=u(1-u)^{k}$

Fermat curves

$F: x^{p}+y^{p}=z^{p}$

Quotients of Fermat curves
$F_{k}: v^{p}=u(1-u)^{k}$

- F has an action of $G=\mu_{p} \times \mu_{p}$ given by

$$
A^{i} B^{j}[x: y: z]=\left[\zeta_{p}^{i} x: \zeta_{p}^{j} y: z\right]
$$

Fermat curves

$F: x^{p}+y^{p}=z^{p}$

Quotients of Fermat curves $F_{k}: v^{p}=u(1-u)^{k}$

- F has an action of $G=\mu_{p} \times \mu_{p}$ given by

$$
A^{i} B^{j}[x: y: z]=\left[\zeta_{p}^{i} x: \zeta_{p}^{j} y: z\right]
$$

- F_{k} has field of fractions $K\left(x^{p}, x y^{k}\right)$, the field fixed by $\left\langle A B^{-k^{-1}}\right\rangle$.

Fermat curves $F: x^{p}+y^{p}=z^{p}$

Quotients of Fermat curves $F_{k}: v^{p}=u(1-u)^{k}$

- F has an action of $G=\mu_{p} \times \mu_{p}$ given by

$$
A^{i} B^{j}[x: y: z]=\left[\zeta_{p}^{i} x: \zeta_{p}^{j} y: z\right]
$$

- F_{k} has field of fractions $K\left(x^{p}, x y^{k}\right)$, the field fixed by $\left\langle A B^{-k^{-1}}\right\rangle$.
- A basis for the holomorphic one-forms of F_{k} is

$$
\left\{\omega_{m,\langle m k\rangle} \mid 1 \leq m \leq p-1,1 \leq m+\langle m k\rangle \leq p-1\right\} .
$$

Set up:

- X is a complete non-singular genus $g>1$ curve over K.
- $K=\bar{K}$ and $\operatorname{char}(K)=0$.
- σ is an automorphism of X of order $N \geq 2 g+1$.
- $H_{\lambda}: y^{2}=\left(x^{g+1}-1\right)\left(x^{g+1}-\lambda\right), \lambda \in K \backslash\{0,1\}$.
- $\tau_{\lambda}(x, y)=\left(\zeta_{g+1} x,-y\right)$

Set up:

- X is a complete non-singular genus $g>1$ curve over K.
- $K=\bar{K}$ and $\operatorname{char}(K)=0$.
- σ is an automorphism of X of order $N \geq 2 g+1$.
- $H_{\lambda}: y^{2}=\left(x^{g+1}-1\right)\left(x^{g+1}-\lambda\right), \lambda \in K \backslash\{0,1\}$.
- $\tau_{\lambda}(x, y)=\left(\zeta_{g+1} x,-y\right)$

Theorem (Irokawa \& Sasaki, 1995)

Assume that (X, σ) is not isomorphic to $\left(H_{\lambda}, \tau_{\lambda}\right)$ for any λ with
$g=\frac{1}{2}(N-2)$ and g even. Then (X, σ) is isomorphic to $v^{p}=u^{r}(1-u)^{s}$, together with the automorphism $(u, v) \mapsto\left(u, \zeta_{N} v\right)$.

$$
\operatorname{Jac}(F) \sim_{\mathbb{Q}} \prod_{k=1}^{p-2} \operatorname{Jac}\left(F_{k}\right)
$$

$$
\operatorname{Jac}(F) \sim_{\mathbb{Q}} \prod_{k=1}^{p-2} \operatorname{Jac}\left(F_{k}\right)
$$

Theorem (Gross \& Rohrlich, 1978)

If $p>7$ and $k \neq 1,(p-1) / 2, p-2$, then $\operatorname{Jac}\left(F_{k}\right)$ has a point of infinite order.

To be continued...

To be continued...

Thank you!

