Fermat Quotients, Contruction and Applications

Juanita Duque-Rosero

Colorado State University

November 16, 2019

Fermat curves
$$F: x^p + y^p = z^p$$

Quotients of Fermat curves $F_k: v^p = u(1-u)^k$

イロト イヨト イヨト イヨト

3

Fermat curves
$$F: x^p + y^p = z^p$$

Quotients of Fermat curves $F_k : v^p = u(1-u)^k$

• F has an action of $G = \mu_p \times \mu_p$ given by

$$A^{i}B^{j}[x:y:z] = [\zeta_{p}^{i}x:\zeta_{p}^{j}y:z].$$

э

イロト 不得下 イヨト イヨト

Fermat curves
$$F: x^p + y^p = z^p$$

Quotients of Fermat curves $F_k: v^p = u(1-u)^k$

• F has an action of $G = \mu_p \times \mu_p$ given by

$$A^{i}B^{j}[x:y:z] = [\zeta_{p}^{i}x:\zeta_{p}^{j}y:z].$$

• F_k has field of fractions $K(x^p, xy^k)$, the field fixed by $\langle AB^{-k^{-1}} \rangle$.

- E - - E -

Fermat curves
$$F: x^p + y^p = z^p$$

Quotients of Fermat curves $F_k : v^p = u(1-u)^k$

• F has an action of $G = \mu_p \times \mu_p$ given by

$$A^{i}B^{j}[x:y:z] = [\zeta_{p}^{i}x:\zeta_{p}^{j}y:z].$$

- F_k has field of fractions $K(x^p, xy^k)$, the field fixed by $\langle AB^{-k^{-1}} \rangle$.
- A basis for the holomorphic one-forms of F_k is

$$\{\omega_{m,\langle mk \rangle} \mid 1 \leq m \leq p-1, \ 1 \leq m+\langle mk \rangle \leq p-1\}.$$

Set up:

• X is a complete non-singular genus g > 1 curve over K.

•
$$K = \overline{K}$$
 and char $(K) = 0$.

- σ is an automorphism of X of order $N \ge 2g + 1$.
- $H_{\lambda}: y^2 = (x^{g+1} 1)(x^{g+1} \lambda), \ \lambda \in K \setminus \{0, 1\}.$

•
$$\tau_{\lambda}(x,y) = (\zeta_{g+1}x,-y)$$

イロト 不得 トイヨト イヨト 二日

Set up:

• X is a complete non-singular genus g > 1 curve over K.

•
$$K = \overline{K}$$
 and char $(K) = 0$.

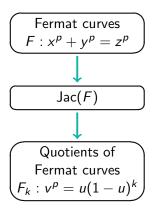
- σ is an automorphism of X of order $N \ge 2g + 1$.
- $H_{\lambda}: y^2 = (x^{g+1} 1)(x^{g+1} \lambda), \ \lambda \in K \setminus \{0, 1\}.$

•
$$\tau_{\lambda}(x,y) = (\zeta_{g+1}x,-y)$$

Theorem (Irokawa & Sasaki, 1995)

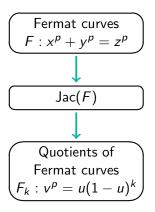
Assume that (X, σ) is not isomorphic to $(H_{\lambda}, \tau_{\lambda})$ for any λ with $g = \frac{1}{2}(N-2)$ and g even. Then (X, σ) is isomorphic to $v^{p} = u^{r}(1-u)^{s}$, together with the automorphism $(u, v) \mapsto (u, \zeta_{N}v)$.

(人間) システン ステン・テ



3

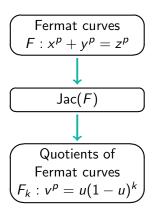
イロト イヨト イヨト イヨト



$$\operatorname{Jac}(F) \sim_{\mathbb{Q}} \prod_{k=1}^{p-2} \operatorname{Jac}(F_k)$$

イロト イヨト イヨト イヨト

3



$$\operatorname{Jac}(F) \sim_{\mathbb{Q}} \prod_{k=1}^{p-2} \operatorname{Jac}(F_k)$$

Theorem (Gross & Rohrlich, 1978)

If p > 7 and $k \neq 1$, (p-1)/2, p-2, then Jac(F_k) has a point of infinite order.

イロト 不得下 イヨト イヨト

To be continued...

Э

イロト イヨト イヨト イヨト

To be continued...

Thank you!

(人間) トイヨト イヨト