The Jacobian
Juanita Duque-Rosero
Outline: (1) Preliminaries: Elliptic Curves, lattices \& Riemann surfaces.
(2) The Jacobian: Definition.
(3) The Abel-Jacobi map: Definition and example.
(4) The Abel-Jacobi Theorem: Sketch of the proof.
(5) Applications: Rational points.

Elliptic Curves (Curves of genus 1 with a) Example: $E: y^{2}=x^{3}-x$

Real glasses $\mathbb{R}-\mathbb{N}$

Complex glasses D-C

Abelian Group Structure of E

We define

$$
P+Q+R=O_{\mathbb{I}} \text { identity }
$$

P, Q and R are colinear
We say that E is an Abelian variety.
Applications: (1) Rational points
(2) Cryptography

Are Elliptic Curves Special?
Can we define an Abelian group structure on corves of difepenty? Answer: We cannot. Elliptic corves are special! Projective tromped Solution: We can define an abstract object where $P+Q$ maxes sense: $\left\{\sum_{\text {Divisor of } C \text {. }}^{n}\left[P_{i} \mid P_{i} \in C(C)\right\}\right.$
Better solution: We define the Jacobian of C.

Lattices
Der. A lattice is an additive subgroup of \mathbb{C}^{n}, generated over \mathbb{Z} by $2 n$ vectors that are linearly independent over \mathbb{R}.

Riemann Surfaces
Def. A Riemann surface is a one dimensional complex manifold.
Examples: (1) $S^{2}=9$, using the stereographic projection.
(2) C, a smooth projective plane curve.

A In this talk, X will be a compact Riemann surface.
Topological Structure
X is homeomorphic to $\left(\begin{array}{cc}C W & \text {-complex } \\ 1 & 0 \text {-cell } \\ 2 g & 1 \text {-ells } \\ 1 & 2 \text {-cell }\end{array}\right)$ via

$$
H_{1}(X, \mathbb{Z}) \cong \operatorname{span}_{\mathbb{Z}}^{\left\{\left[a_{i}\right],\left[b_{1}\right] \mid 1 \leq i \leq g\right\}}
$$

$a:$ and b_{i} are loops on X :

Topological Structure

$H_{1}(x, \mathbb{Z}) \cong \operatorname{span}_{\mathbb{Z}} \underbrace{\left\{\left[a_{i}\right],\left[b_{i}\right]\right\}}_{\text {Basis }}$ a_{i} and b_{i} are loops on X.

Complex Structure
We can take "derivatives".
$\Omega^{\prime}(X)=\{\underbrace{\text { Holomorphic 1-forms on } X}\}$
Collection of compatible ω_{φ}, where
$\varphi: U \rightarrow V$ is a chart of X and $\omega_{\varphi}=f(z) d z$, with $f(z)$ holomaphic on V.
$\Omega^{\prime}(x) \cong \operatorname{span}_{\mathbb{C}}\left\{w_{1}, \ldots, w_{g}\right\}$.

Topological Structure+ Complex Structure

We can integrate holomorphic 1-forms over homology classes:

$$
\int_{[c]} w:=\int_{c} w .
$$

This is well defined by the Theorem of Stokes.

The Jacobian

$$
\operatorname{TaC}(X):=\frac{\Omega^{\prime}(x)^{*}}{\{\underbrace{\left.\int_{[c]]^{\prime} \Omega^{\prime}(x) \rightarrow \mathbb{C}}\right\}}_{\text {Period }}}=\Delta_{\uparrow \text { Lattice }}
$$

Examples: $\left(0 J \mathrm{Jac}\left(s^{2}\right)=\{0\}\right.$

$$
\text { (2) Jack }(E)=\mathbb{C} / \Lambda \cong E
$$

Sanity Check

$$
\operatorname{Jac}(x):=\frac{\Omega^{\prime}(x)^{*}}{\left\{\int_{f i c} \cdot(x) x-d\right\}}
$$

(1) Is $J_{a c}(X)$ an Abelian group?

Yes:

$$
\begin{aligned}
\Omega^{\prime}(x)^{*} & \cong \mathbb{C}^{g} \\
\lambda & \longmapsto\left(\lambda\left(\omega_{1}\right), \ldots, \lambda\left(\omega_{\mathrm{g}}\right)\right)
\end{aligned}
$$

(2) Does $J a c(X)$ tell us how to add $P+Q, P, Q \in X(\mathbb{C})$?

Not yet! How do we represent P and Q in $\operatorname{Jac}(x)$?
We need: $X \hookrightarrow \operatorname{Jac}(X)$.

Why periods?
We try to construct a map $X \longrightarrow \Omega^{\prime}(X)^{*}$
Idea:

$$
\begin{aligned}
& X \longrightarrow \quad \Omega^{\prime}(x)^{*} \\
& P \mapsto\left(w \mapsto \int_{\gamma_{p}} w\right)
\end{aligned}
$$

\triangle Not well defined.

Note: $\int_{r_{p}} \omega-\int_{r_{p}} w=\int_{\gamma_{p}-\gamma_{p}} w$ is a period!

The Abel-Jacobi Map
Def. Let $P_{0} \in X(C)$. The Abel-Jacobi map $A J: X \rightarrow J_{a c}(X)$ with respect to P_{0} is the map $A J$ as before, modulo the periods.

$$
\begin{aligned}
\text { AU: } X & \longrightarrow J \operatorname{Jac}(X) \\
P & \longmapsto\left(w \mapsto \int_{\gamma_{p}} w\right)+\Delta .
\end{aligned}
$$

Note: AJ depends on P.
Question: Is AJ injective?

Example: $\quad C: y^{2}=x\left(x^{2}-1\right)\left(x^{2}-2\right)=f(x)$

$$
\begin{aligned}
& \Omega^{\prime}(C)=\left\langle\frac{d x}{y}, \frac{x d x}{y}\right\rangle_{\mathbb{C}} \\
& J_{a c}(C) \cong \mathbb{C}^{2} / \Delta, \quad \Delta=\lambda_{1} \mathbb{Z} \oplus \lambda_{2} \mathbb{Z} \oplus \lambda_{3} \mathbb{Z} \oplus \lambda_{4} \mathbb{Z} .
\end{aligned}
$$

Example: Finding Δ

$$
\sqrt{[0: 0: 1]} \int_{[-\sqrt{2}}^{\int_{0}^{-1} x d x} \int_{-1}^{-1} \frac{d x}{\sqrt{f(x)}}+\int_{-1}^{0} \frac{d x}{-\sqrt{f(x)}} \approx 4.146 i
$$

$$
\int_{0}^{-1} \frac{x d x}{\sqrt{f(x)}}+\int_{-1}^{0} \frac{x d x}{-\sqrt{f(x)}} \approx-2.066 i
$$

$$
\lambda_{1}=(4.146 i,-2.066 i)
$$

$$
\left.\int \sum_{[-\sqrt{2}: 0: 1]}^{[-1: 0: 1]} \int_{\zeta} \frac{d x}{y}=-2.409, \int_{(,)} \frac{x d x}{y}=2.865 \quad \lambda_{2}=(-2.409,2.865)\right] \text { } \begin{array}{ll}
& \lambda_{3}=(4.146,2.066) \\
& \lambda_{4}=(-2.409 i,-2.865 i)
\end{array}
$$

Example: Compoting AJ

$$
\begin{aligned}
& \int_{\gamma_{0}} \frac{d x}{y}=\int_{\infty}^{\sqrt{2}} \frac{d x}{\sqrt{f(x)}}+\int_{\sqrt{2}}^{1} \frac{d x}{\sqrt{f(x)}} \approx-0.869+1.204 i, \quad \int_{\gamma_{0}} \frac{x d x}{y} \approx-2.465+1.432 i \\
& \int_{\gamma_{0}^{\prime}} \frac{d x}{y}=\int_{\infty}^{\sqrt{2}} \frac{d x}{\sqrt{f(x)}}+\int_{\sqrt{2}}^{1} \frac{d x}{-\sqrt{f(x)}} \approx-0.869-1.204 i, \quad \int_{\gamma_{0}^{\prime}} \frac{x d x}{y} \approx-2.465-1.432 i \\
& A J([1: 0: 1])=(-0.869+1.204 i,-2.465+1.432 i)+\Delta=(-0.869-1.204 i,-2.465+1.432 i)-\lambda_{4}+\Delta
\end{aligned}
$$

$$
\left(\lambda_{4}=(-2.409 i,-2.865 i)\right)
$$

Divisors of X
Def. The group of divisors of X is:

$$
\operatorname{Div}(X):=\left\{\sum_{i=1}^{r} n_{P_{i}}\left[P_{i}\right] \mid P_{i} \in X(\mathbb{C}), n_{p_{i}} \in \mathbb{Z}, r \in \mathbb{Z} \geqslant 0\right\}
$$

Example: $3[(1,0,0)]-[(0,-1,0)] \in \operatorname{Div}\left(S^{2}\right)$.
We can extend AJ to AJ: $\operatorname{Div}(x) \rightarrow \operatorname{Jac}(x)$:

$$
A J\left(\sum_{i=1}^{r} n_{P_{P}}\left(P_{i}\right):=\sum_{i=1}^{r} n_{P_{i}} A J\left(P_{i}\right)\right.
$$

Some Subgroups of $\operatorname{Div}(X)$
Def. The subgroup of divisors of degree 0 of X is:

$$
\operatorname{Div}^{0}(x):=\left\{\sum_{i=1}^{k} n_{p}\left[i_{i}\right] \mid \sum_{i=1}^{k} n_{p_{i}}=0\right\}
$$

Def. The subgrap of principal divisors of X is:

$$
P \operatorname{Div}(X):=\{\operatorname{div}(f) \mid f: X \rightarrow \mathbb{C} \text { is meromorphic }\}
$$

Lemma: $P \operatorname{Div}(x) \subseteq \operatorname{Div}^{0}(x)$.

The Abel-Jacobi Theorem
We consider the restriction $A J^{0}: \operatorname{Div}(x) \subseteq \operatorname{Div}(x) \longrightarrow J_{a c}(x)$
(Independent of the choice of P_{0})
$\left\{\begin{array}{l}\text { Abel's Theorem. The kernel of } A J^{0} \text { is Div }(X) . \\ \left(J_{\text {acobis }} \text { Inversion Theorem. The map AJ is sorsective. }\right. \\ A J^{0}: \frac{D_{i v}(x)}{\text { PD iv }(X)} \longrightarrow \operatorname{Sac}(X) \quad \begin{array}{l}\text { is an isomorphism of } \\ \text { complex manifolds }\end{array}\end{array}\right.$

Corollary. Assume $g \geqslant 1$. Then $A J: X \rightarrow J a d X)$ is infective.
proof. $P, Q \in X(\mathbb{C}) \cdot A J(P)=A J(Q) \Longrightarrow A J^{\circ}([P]-[Q])=0$
Abel's Theorem $\Rightarrow \exists f: x \rightarrow \mathbb{C}$ meromorphic such that zeros $(f)=P$ (with mull. 1) poles $(f)=Q$ (with mull. 1)

$$
\Rightarrow F: X \rightarrow \mathbb{C}_{\infty} \quad \text { s.t } \quad F(x)= \begin{cases}f(x), & x \neq Q, \\ \infty, & x=Q .\end{cases}
$$

We know: $\left.\begin{array}{rl}-F & \text { is holomorphic } \\ -F \text { has degree } 1\end{array}\right\} F$ is an isomorphism $\rightarrow \leftarrow$

Abel's Theorem (1): $\operatorname{AJ}^{0}(\operatorname{div}(f))=\Delta$
Step 1: $F: X \longrightarrow \mathbb{C}_{\infty}, F(x)= \begin{cases}f(x) & \text { x not a pole of } f, \\ \infty & \text { otherwise. }\end{cases}$
Step 2: γ, γ does not pass through any branched pts.
Step 3: $F^{*} \gamma=\sum_{i=1}^{d} \gamma_{i}$

Step 4: $\int_{F^{*} \gamma} \omega \stackrel{\star}{=} \int_{\gamma} \operatorname{Tr}(\omega)_{\mathbb{C}^{2}}=0$ trace of ω (is holo. if ω is halo.)

Abel's Theorem (2): $A J^{0}(D)=\Delta \Rightarrow D=\operatorname{div}(f)$.

* Step 1: $D=\sum_{i=1}^{r} n_{i} p_{i}, n_{i} \neq 0$. Find a 1-form w such that:
- ω has simple poles at P_{i} and no more poles,
- $\operatorname{Res}_{p_{i}}(w)=n_{i}$ and $\operatorname{Res}_{p}(w)=0 \quad \forall P \notin\left\{P_{i}\right\}$,
- $\int_{a_{i}} w$ and $\int_{b_{i}} w$ are multiples of $2 \pi i$.

Step 2: Fix $P_{0} \in X(\mathbb{C})$, define $f(P):=\exp \left(\int_{p_{0}}^{P} w\right)$
Step 3: Near $P_{i}, w=\left(\frac{n_{i}}{z}+g(z)\right) d z \Rightarrow f(z)=z^{n_{i}} e^{h(z)}$
holomorphic.

Jacobi's Inversion Theorem
Step 1: Fix $P_{0} \in X(\mathbb{C})$. Let $\Phi: X^{(g)} \longrightarrow \operatorname{Jac}(x)$

$$
\left(P_{1}, \ldots, p_{g}\right) \longmapsto \sum_{i=1}^{g} A J\left(P_{i}-P_{0}\right)
$$

*Step 2: Use the Implicit Function Theorem: $p \in \cup \stackrel{(}{\longrightarrow} V \ni \Phi(p)$.
Step 3: For $\lambda \in \Omega^{\prime}(x)^{*} \cong \mathbb{C}^{g}, \quad \exists n \in \mathbb{Z}$ st. $\Phi(Q)=\Phi(p)+\frac{\lambda}{n}$.
Step 4: $D^{\prime}:=n \sum_{i=1}^{g}\left(Q_{i}-P_{i}\right)+g P_{0} \approx \sum_{i=1}^{g} R_{i}$ and $A J^{\prime}\left(D^{\prime}-g P_{0}\right)=\lambda+\Lambda$

Jacobian matrix $\left(\begin{array}{lll}\frac{w_{1}}{\partial z}\left(P_{1}\right) & \cdots & \frac{w_{1}}{\partial z}\left(P_{g}\right) \\ \frac{w_{g}}{\partial z}\left(P_{1}\right) & \cdots & \frac{w_{g}}{\partial z}\left(P_{g}\right)\end{array}\right)$

The Mordell-Weil group
Goal: To find rational points on a Jacobian.
Definition. The Mordell-Weil group of Jack(X) (over \mathbb{Q}) is:

$$
\operatorname{Jac}(\mathbb{Q})=\left\{P \in J \mid P^{\sigma}=P \text { for all }\left.\sigma \in G_{a}\right|_{\bar{Q} / \mathbb{Q}}\right\}
$$

Mordell-Weil Theorem (1929).Jac(Q) is a F.G. Abelian group.

$$
J_{a c}(\mathbb{Q}) \cong J_{a c}(\mathbb{Q})_{\text {torsion }} \oplus \mathbb{Z}^{r}
$$

Understanding the Torsion (E)

$$
\begin{aligned}
& E[m]:=\{P \in E(\mathbb{C}) \mid m P=0\} \\
& A J: E \leadsto J_{a c}(E) \cong \mathbb{C} / \Delta
\end{aligned}
$$

Then $E[m] \cong \mathbb{Z} / m \mathbb{Z} \times \mathbb{Z} / m \mathbb{Z}$
We have the Kummer pairing (if $E[m] \subset E(\mathbb{Q})$)

$$
\begin{aligned}
k: E(\mathbb{Q}) \times G \bar{Q} / \mathbb{Q} & \longrightarrow E[m] \\
(P, \sigma) & \longrightarrow Q^{\sigma}-Q
\end{aligned} \quad m Q=P .
$$

Mordell-Weil + Rational Points
$F: x^{5}+y^{5}=z^{5}$, Fermat curve of degree 5 (genus 6).
Theorem (Klassen \& Tzermias, '97) Let $k / \mathbb{Q},[k: \mathbb{Q}]=3$.

$$
F(k) \backslash F(\mathbb{Q})=\phi
$$

Main tool: $J_{\text {ac }}(F)(\mathbb{Q}) \cong(\mathbb{Z} / 5 \mathbb{Z})^{2}$.

Summary: X compact Riemann surface.

$$
\begin{aligned}
& \operatorname{Jac}(x):=\Omega^{\prime}(x)^{*} /\left[\int_{[c]}: \omega \mapsto \int_{\left.[c]^{w}\right\}}\right\} \\
& \text { Abel-Jacobi map: AJ: } X \longrightarrow J_{\text {ac }}(x) \\
& \text { Poo } \sigma_{p} \cdot P \quad D \longmapsto\left(\omega \mapsto \int_{\gamma_{p}} \omega\right)
\end{aligned}
$$

Abel-Jacobi Theorem: $\frac{\operatorname{Div}^{0}(x)}{\operatorname{Piv}(x)} \cong \operatorname{Jac}(X)$
Thank You!

