Origami and Mathematics

Juanita Duque-Rosero

December 12, 2019

• Cannot be stretched or compressed.

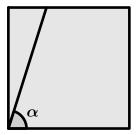
- Cannot be stretched or compressed.
- Cannot be sheared.

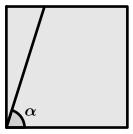
- Cannot be stretched or compressed.
- Cannot be sheared.
- It can be easily folded!

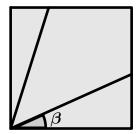
- Cannot be stretched or compressed.
- Cannot be sheared.
- It can be easily folded!

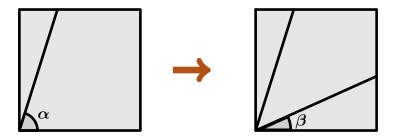
Robert J. Lang

Something else...



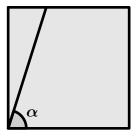




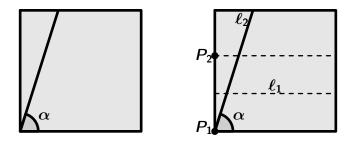


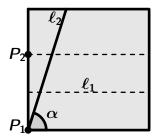
This shows how origami is more powerful than straightedge and compass.

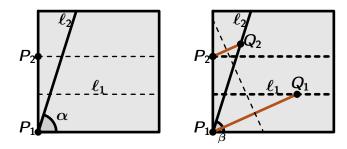
How to do it?

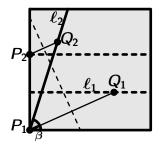


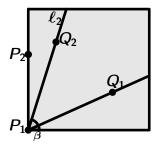
How to do it?





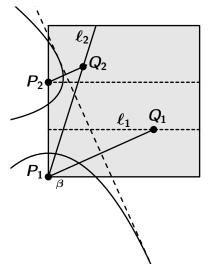






What is happening?

We are finding simultaneous tangents to parabolas.



An algebra application: solving $x^3 + ax + b$

We will find the solutions for $x^3 + ax + b = 0$ where $a, b \in \mathbb{R}$ and $b \neq 0$ by finding a simultaneous tangent to:

$$\left(y-\frac{1}{2}a\right)^2=2bx$$
 and $y=\frac{1}{2}x^2$

An algebra application: solving $x^3 + ax + b$

We will find the solutions for $x^3 + ax + b = 0$ where $a, b \in \mathbb{R}$ and $b \neq 0$ by finding a simultaneous tangent to:

$$\left(y-\frac{1}{2}a\right)^2=2bx$$
 and $y=\frac{1}{2}x^2$

The slopes are:

$$m_1 = \frac{b}{y_1 - \frac{1}{2}a}$$
 and $m_2 = x_2$

An algebra application: solving $x^3 + ax + b$

We will find the solutions for $x^3 + ax + b = 0$ where $a, b \in \mathbb{R}$ and $b \neq 0$ by finding a simultaneous tangent to:

$$\left(y-\frac{1}{2}a\right)^2=2bx$$
 and $y=\frac{1}{2}x^2$

The slopes are:

$$m_1 = \frac{b}{y_1 - \frac{1}{2}a}$$
 and $m_2 = x_2$

Hence:

$$x_1 = \frac{b}{2m_1^2}$$
 and
$$y_1 = \frac{b}{m_1} + \frac{a}{2}$$

$$y_2 = \frac{m_2^2}{2}$$

$$x_1 = \frac{b}{2m^2}$$

$$y_1 = \frac{b}{m} + \frac{a}{2}$$
 and
$$y_2 = \frac{m^2}{2}$$

So the slope of the line between these points is:

$$m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{m^4 - 2bm - am^2}{2m^3 - b}$$

$$x_1 = \frac{b}{2m^2}$$
 and
$$y_1 = \frac{b}{m} + \frac{a}{2}$$

$$y_2 = \frac{m^2}{2}$$

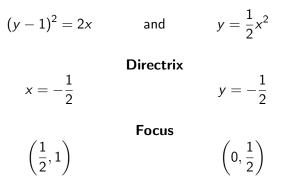
So the slope of the line between these points is:

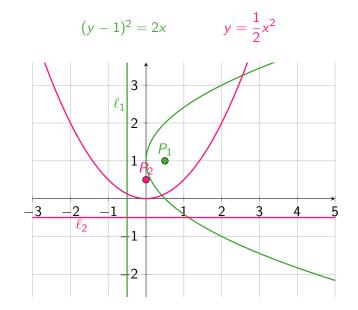
$$m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{m^4 - 2bm - am^2}{2m^3 - b}$$
$$m(m^3 + am + b) = 0$$
$$m^3 + am + b = 0$$

Real roots of $x^3 + ax + b$ are the slope of a simultaneous tangent to:

$$\left(y-\frac{1}{2}a\right)^2=2bx$$
 and $y=\frac{1}{2}x^2$

Example: a = 2 and b = 1





 $P_1 = (0.5, 1), \ell_1 : x = -0.5$

$$P_2 = (0, 0.5), \ell_2 : y = -0.5$$

O Construct the *x* and *y* axis.

- Identify P₁, P₂, l₁ and l₂ in the paper.
- Make a fold such that P₁ touches l₁ and P₁ touches l₁ at the same time. The slope m of the resulting line is the solution.
- Find the point (m, 0)

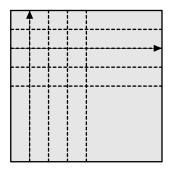
The method

 $P_1 = (0.5, 1), \ell_1 : x = -0.5$

$$P_2 = (0, 0.5), \ell_2 : y = -0.5$$

Output Construct the *x* and *y* axis.

- Identify P₁, P₂, l₁ and l₂ in the paper.
- Make a fold such that P₁ touches l₁ and P₁ touches l₁ and P₁ touches l₁ at the same time. The slope m of the resulting line is the solution.
- Find the point (m, 0)

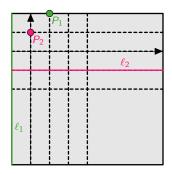


The method

 $P_1 = (0.5, 1), \ell_1 : x = -0.5$

$$P_2 = (0, 0.5), \ell_2 : y = -0.5$$

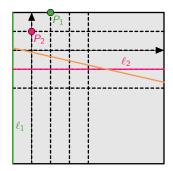
- Construct the x and y axis.
- **2** Identify P_1 , P_2 , ℓ_1 and ℓ_2 in the paper.
- Make a fold such that P₁ touches l₁ and P₁ touches l₁ at the same time. The slope m of the resulting line is the solution.
- Find the point (m, 0)



 $P_1 = (0.5, 1), \ell_1 : x = -0.5$

 $P_2 = (0, 0.5), \ell_2 : y = -0.5$

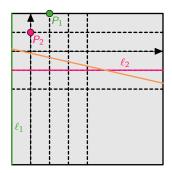
- Construct the x and y axis.
- Identify P₁, P₂, l₁ and l₂ in the paper.
- Make a fold such that P₁ touches l₁ and P₁ touches l₁ at the same time. The slope *m* of the resulting line is the solution.
- Sind the point (m, 0)

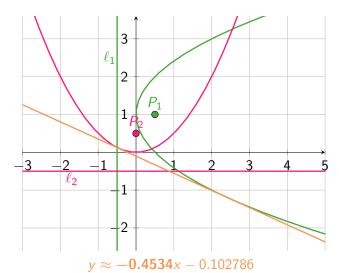


 $P_1 = (0.5, 1), \ell_1 : x = -0.5$

$$P_2 = (0, 0.5), \ell_2 : y = -0.5$$

- Construct the x and y axis.
- Identify P₁, P₂, l₁ and l₂ in the paper.
- Make a fold such that P₁ touches l₁ and P₁ touches l₁ at the same time. The slope m of the resulting line is the solution.
- Find the point (m, 0)





The real solution of $x^3 + 2x + 1$ is **not** rational:

$$x = \frac{\sqrt[3]{\frac{1}{2}\left(\sqrt{177} - 9\right)}}{3^{2/3}} - 2\sqrt[3]{\frac{2}{3\left(\sqrt{177} - 9\right)}}$$

Huzita Axioms

- Given two points P₁ and P₂ there is a unique fold passing through both of them.
- Q Given two points P₁ and P₂ there is a unique fold placing P₁ onto P₂.
- Siven two lines L_1 and L_2 , there is a fold placing L_1 onto L_2 .
- Given a point P and a line L, there is a unique fold perpendicular to L passing through P.
- Given two points P₁ and P₂ and a line L, there is a fold placing P₁ onto L and passing through P₂.
- Given two points P₁ and P₂ and two lines L₁ and L₂, there is a fold placing P₁ onto L₁ and P₂ onto L₂.
- Given a point P and two lines L₁ and L₂, there is a fold placing P onto L₁ and perpendicular to L₂.

Let \mathscr{O} be the set of numbers that are constructible using **origami**.

 \mathscr{A} is the set of numbers that are constructible with **ruler and compass**.

Let \mathscr{O} be the set of numbers that are constructible using **origami**.

 \mathscr{A} is the set of numbers that are constructible with **ruler and compass**.

 $\mathscr{A}\subsetneq \mathscr{O}$

Let \mathscr{O} be the set of numbers that are constructible using **origami**.

- $\alpha \in \mathscr{O} \quad \iff \quad \alpha \text{ is constructible by marked ruler}$
 - $\iff \alpha$ is constructible by intersecting conics
 - $\iff \alpha$ lies on a 2-3 tower $\mathbb{Q} = F_0 \subseteq F_1 \subset \cdots \subset F_n$
 - $\iff \qquad \alpha \text{ is algebraic over } \mathbb{Q} \text{ with minimal} \\ \text{polynomial of degree } 2^k 3^l$

Thank you!