Origami and Math

Juanita Duque-Rosero

October 26, 2021

Fun fact

What are "nice" properties of paper?

- Cannot be stretched or compressed.
- Cannot be sheared.
- It can be easily folded!

What are "nice" properties of paper?

- Cannot be stretched or compressed.
- Cannot be sheared.
- It can be easily folded!

Robert J. Lang

Can we use origami in real life?

The Miura fold has been used to send solar panels to space!

Can we use origami in real life?

The Miura fold has been used to send solar panels to space!

- At each step of the folding, each parallelogram is completely flat. This means that we can use rigid materials.
- Folded material can be unpacked in one motion by pulling on its opposite ends, and likewise folded by pushing the two ends together.

How do we make complicated designs?

An origami figure is determined by a crease pattern on the paper. This is the "blueprint of the shape". It consists on mountain folds and valley folds.

How do we make complicated designs?

An origami figure is determined by a crease pattern on the paper. This is the "blueprint of the shape". It consists on mountain folds and valley folds.

Circle/river method or tree method (1994): Gives a systematic method for folding any structure that topologically resembles a weighted tree.

Circle packing

Circle placing

Given a set of n circles, place the circle centers on the paper, such that the overall circle layout is non-overlapping.

Circle placing

Given a set of n circles, place the circle centers on the paper, such that the overall circle layout is non-overlapping.

The problem of Circle Placing is NP-Hard.

Something else...

Something else...

You can trisect an angle by folding paper!

Something else...

You can trisect an angle by folding paper!

Something else...

You can trisect an angle by folding paper!

Something else...

You can trisect an angle by folding paper!

This shows how origami is more powerful than straightedge and compass.

How to do it?

How to do it?

What is happening?

We are finding simultaneous tangents to parabolas.

An algebra application: solving $x^{3}+a x+b$

We will find the solutions for $\boldsymbol{x}^{\mathbf{3}}+\boldsymbol{a x}+\boldsymbol{b}=\mathbf{0}$ where $a, b \in \mathbb{R}$ and $b \neq 0$ by finding a simultaneous tangent to:

$$
\left(y-\frac{1}{2} a\right)^{2}=2 b x \quad \text { and } \quad y=\frac{1}{2} x^{2}
$$

An algebra application: solving $x^{3}+a x+b$

We will find the solutions for $\boldsymbol{x}^{\mathbf{3}}+\boldsymbol{a x}+\boldsymbol{b}=\mathbf{0}$ where $a, b \in \mathbb{R}$ and $b \neq 0$ by finding a simultaneous tangent to:

$$
\left(y-\frac{1}{2} a\right)^{2}=2 b x \quad \text { and } \quad y=\frac{1}{2} x^{2}
$$

The slopes are:

$$
m_{1}=\frac{b}{y_{1}-\frac{1}{2} a} \quad \text { and } \quad m_{2}=x_{2}
$$

An algebra application: solving $x^{3}+a x+b$

We will find the solutions for $\boldsymbol{x}^{\mathbf{3}}+\boldsymbol{a x}+\boldsymbol{b}=\mathbf{0}$ where $a, b \in \mathbb{R}$ and $b \neq 0$ by finding a simultaneous tangent to:

$$
\left(y-\frac{1}{2} a\right)^{2}=2 b x \quad \text { and } \quad y=\frac{1}{2} x^{2}
$$

The slopes are:

$$
m_{1}=\frac{b}{y_{1}-\frac{1}{2} a} \quad \text { and } \quad m_{2}=x_{2}
$$

Hence:

So the slope of the line between these points is:

$$
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{m^{4}-2 b m-a m^{2}}{2 m^{3}-b}
$$

So the slope of the line between these points is:

$$
\begin{gathered}
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{m^{4}-2 b m-a m^{2}}{2 m^{3}-b} \\
m\left(m^{3}+a m+b\right)=0 \\
m^{3}+a m+b=0
\end{gathered}
$$

Solutions for cubic polynomials

Real roots of $\boldsymbol{x}^{\mathbf{3}}+\boldsymbol{a} \boldsymbol{x}+\boldsymbol{b}$ are the slope of a simultaneous tangent to:

$$
\left(y-\frac{1}{2} a\right)^{2}=2 b x \quad \text { and } \quad y=\frac{1}{2} x^{2}
$$

Example: $a=2$ and $b=1$

$$
(y-1)^{2}=2 x \quad \text { and } \quad y=\frac{1}{2} x^{2}
$$

Directrix

$$
x=-\frac{1}{2}
$$

$$
y=-\frac{1}{2}
$$

Focus

$$
\left(\frac{1}{2}, 1\right)
$$

$$
\left(0, \frac{1}{2}\right)
$$

$$
(y-1)^{2}=2 x \quad y=\frac{1}{2} x^{2}
$$

The method

$$
P_{1}=(0.5,1), \ell_{1}: x=-0.5
$$

$$
\boldsymbol{P}_{2}=(0,0.5), \boldsymbol{\ell}_{2}: y=-0.5
$$

(1) Construct the x and y axis.
(2) Identify P_{1}, P_{2}, ℓ_{1} and ℓ_{2} in the paper.
(3) Make a fold such that P_{1} touches ℓ_{1} and P_{1} touches ℓ_{1} at the same time. The slope m of the resulting line is the solution.
(c) Find the point $(m, 0)$

The method

$$
\boldsymbol{P}_{\mathbf{1}}=(0.5,1), \ell_{1}: x=-0.5
$$

$$
\boldsymbol{P}_{2}=(0,0.5), \ell_{2}: y=-0.5
$$

(1) Construct the x and y axis.
(2) Identify P_{1}, P_{2}, ℓ_{1} and ℓ_{2} in the paper.
(3) Make a fold such that P_{1} touches ℓ_{1} and P_{1} touches ℓ_{1} at the same time. The slope m of the resulting line is the solution.
(c) Find the point $(m, 0)$

The method

$$
P_{1}=(0.5,1), \ell_{1}: x=-0.5
$$

$$
\boldsymbol{P}_{2}=(0,0.5), \ell_{2}: y=-0.5
$$

(1) Construct the \boldsymbol{x} and \boldsymbol{y} axis.
(2) Identify P_{1}, P_{2}, ℓ_{1} and ℓ_{2} in the paper.
(3) Make a fold such that P_{1} touches ℓ_{1} and P_{1} touches ℓ_{1} at the same time. The slope m of the resulting line is the solution.
(c) Find the point $(m, 0)$

The method

$$
P_{1}=(0.5,1), \ell_{1}: x=-0.5
$$

$$
\boldsymbol{P}_{2}=(0,0.5), \ell_{2}: y=-0.5
$$

(1) Construct the \boldsymbol{x} and \boldsymbol{y} axis.
(2) Identify P_{1}, P_{2}, ℓ_{1} and ℓ_{2} in the paper.
(3) Make a fold such that P_{1} touches ℓ_{1} and P_{1} touches ℓ_{1} at the same time. The slope m of the resulting line is the solution.
(c) Find the point $(m, 0)$

The method

$$
P_{1}=(0.5,1), \ell_{1}: x=-0.5
$$

$$
\boldsymbol{P}_{2}=(0,0.5), \ell_{2}: y=-0.5
$$

(1) Construct the \boldsymbol{x} and \boldsymbol{y} axis.
(2) Identify P_{1}, P_{2}, ℓ_{1} and ℓ_{2} in the paper.
(3) Make a fold such that P_{1} touches ℓ_{1} and P_{1} touches ℓ_{1} at the same time. The slope m of the resulting line is the solution.
(a) Find the point $(m, 0)$

$$
(y-1)^{2}=2 x \quad y=\frac{1}{2} x^{2}
$$

$$
y \approx-0.4534 x-0.102786
$$

Remark

The real solution of $x^{3}+2 x+1$ is not rational:

$$
x=\frac{\sqrt[3]{\frac{1}{2}(\sqrt{177}-9)}}{3^{2 / 3}}-2 \sqrt[3]{\frac{2}{3(\sqrt{177}-9)}}
$$

Huzita Axioms

(1) Given two points P_{1} and P_{2} there is a unique fold passing through both of them.
(2) Given two points P_{1} and P_{2} there is a unique fold placing P_{1} onto P_{2}.
(3) Given two lines L_{1} and L_{2}, there is a fold placing L_{1} onto L_{2}.
(C) Given a point P and a line L , there is a unique fold perpendicular to L passing through P.
(0) Given two points P_{1} and P_{2} and a line L , there is a fold placing P_{1} onto L and passing through P_{2}.
(0) Given two points P_{1} and P_{2} and two lines L_{1} and L_{2}, there is a fold placing P_{1} onto L_{1} and P_{2} onto L_{2}.
(1) Given a point P and two lines L_{1} and L_{2}, there is a fold placing P onto L_{1} and perpendicular to L_{2}.

Origami numbers

Let \mathscr{O} be the set of numbers that are constructible using origami.
\mathscr{A} is the set of numbers that are constructible with ruler and compass.

Origami numbers

Let \mathscr{O} be the set of numbers that are constructible using origami.
\mathscr{A} is the set of numbers that are constructible with ruler and compass.

$$
\mathscr{A} \subsetneq \mathscr{O}
$$

Origami numbers

Let \mathscr{O} be the set of numbers that are constructible using origami.
$\alpha \in \mathscr{O}$

α is constructible by marked ruler
α is constructible by intersecting conics
$\Longleftrightarrow \quad \alpha$ lies on a 2-3 tower $\mathbb{Q}=F_{0} \subseteq F_{1} \subset \cdots \subset F_{n}$
α is algebraic over \mathbb{Q} with minimal polynomial of degree $2^{k} 3^{\prime}$

