Origami and Math

Juanita Duque-Rosero

October 26, 2021

Fun fact

What are "nice" properties of paper?

- Cannot be stretched or compressed.
- Cannot be sheared.
- It can be easily folded!

What are "nice" properties of paper?

- Cannot be stretched or compressed.
- Cannot be sheared.
- It can be easily folded!

Robert J. Lang

Can we use origami in real life?

The Miura fold has been used to send solar panels to space!

The Miura fold has been used to send solar panels to space!

- At each step of the folding, each parallelogram is completely **flat**. This means that we can use rigid materials.
- Folded material can be unpacked in **one motion** by pulling on its opposite ends, and likewise folded by pushing the two ends together.

An origami figure is determined by a crease pattern on the paper. This is the "blueprint of the shape". It consists on mountain folds and valley folds.

An origami figure is determined by a crease pattern on the paper. This is the "blueprint of the shape". It consists on mountain folds and valley folds.

Circle/river method or tree method (1994): Gives a systematic method for folding any structure that topologically resembles a weighted tree.

Circle packing

Circle placing

Given a set of *n* circles, place the circle centers on the paper, such that the overall circle layout is non-overlapping.

Circle placing

Given a set of *n* circles, place the circle centers on the paper, such that the overall circle layout is non-overlapping.

The problem of Circle Placing is NP-Hard.

Something else...

This shows how origami is more powerful than straightedge and compass.

How to do it?

How to do it?

What is happening?

We are finding simultaneous tangents to parabolas.

An algebra application: solving $x^3 + ax + b$

We will find the solutions for $x^3 + ax + b = 0$ where $a, b \in \mathbb{R}$ and $b \neq 0$ by finding a simultaneous tangent to:

$$\left(y-\frac{1}{2}a\right)^2=2bx$$
 and $y=\frac{1}{2}x^2$

An algebra application: solving $x^3 + ax + b$

We will find the solutions for $x^3 + ax + b = 0$ where $a, b \in \mathbb{R}$ and $b \neq 0$ by finding a simultaneous tangent to:

$$\left(y-\frac{1}{2}a\right)^2=2bx$$
 and $y=\frac{1}{2}x^2$

The slopes are:

$$m_1 = \frac{b}{y_1 - \frac{1}{2}a}$$
 and $m_2 = x_2$

An algebra application: solving $x^3 + ax + b$

We will find the solutions for $x^3 + ax + b = 0$ where $a, b \in \mathbb{R}$ and $b \neq 0$ by finding a simultaneous tangent to:

$$\left(y-\frac{1}{2}a\right)^2=2bx$$
 and $y=\frac{1}{2}x^2$

The slopes are:

$$m_1 = \frac{b}{y_1 - \frac{1}{2}a}$$
 and $m_2 = x_2$

Hence:

 $x_1 = \frac{b}{2m_1^2}$ and $y_1 = \frac{b}{m_1} + \frac{a}{2}$ $y_2 = \frac{m_2^2}{2}$

$$x_1 = \frac{b}{2m^2}$$

$$y_1 = \frac{b}{m} + \frac{a}{2}$$
 and
$$y_2 = \frac{m^2}{2}$$

So the slope of the line between these points is:

$$m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{m^4 - 2bm - am^2}{2m^3 - b}$$

$$x_1 = \frac{b}{2m^2}$$
 and
$$y_1 = \frac{b}{m} + \frac{a}{2}$$

$$y_2 = \frac{m^2}{2}$$

So the slope of the line between these points is:

$$m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{m^4 - 2bm - am^2}{2m^3 - b}$$
$$m(m^3 + am + b) = 0$$
$$m^3 + am + b = 0$$

Real roots of $x^3 + ax + b$ are the slope of a simultaneous tangent to:

$$\left(y-\frac{1}{2}a\right)^2=2bx$$
 and $y=\frac{1}{2}x^2$

Example: a = 2 and b = 1

 $P_1 = (0.5, 1), \ell_1 : x = -0.5$

$$P_2 = (0, 0.5), \ell_2 : y = -0.5$$

Oconstruct the *x* and *y* axis.

- Identify P₁, P₂, l₁ and l₂ in the paper.
- Make a fold such that P₁ touches l₁ and P₁ touches l₁ at the same time. The slope m of the resulting line is the solution.
- Find the point (m, 0)

 $P_1 = (0.5, 1), \ell_1 : x = -0.5$

$$P_2 = (0, 0.5), \ell_2 : y = -0.5$$

Output Construct the *x* and *y* axis.

- Identify P₁, P₂, l₁ and l₂ in the paper.
- Make a fold such that P₁ touches l₁ and P₁ touches l₁ at the same time. The slope m of the resulting line is the solution.
- Find the point (*m*, 0)

 $P_1 = (0.5, 1), \ell_1 : x = -0.5$

$$P_2 = (0, 0.5), \ell_2 : y = -0.5$$

- Construct the x and y axis.
- **(a)** Identify P_1 , P_2 , ℓ_1 and ℓ_2 in the paper.
- Make a fold such that P₁ touches l₁ and P₁ touches l₁ at the same time. The slope m of the resulting line is the solution.
- Find the point (m, 0)

 $P_1 = (0.5, 1), \ell_1 : x = -0.5$

$$P_2 = (0, 0.5), \ell_2 : y = -0.5$$

- Construct the x and y axis.
- Identify P₁, P₂, l₁ and l₂ in the paper.
- Make a fold such that P₁ touches l₁ and P₁ touches l₁ at the same time. The slope *m* of the resulting line is the solution.
- Find the point (m, 0)

 $P_1 = (0.5, 1), \ell_1 : x = -0.5$

$$P_2 = (0, 0.5), \ell_2 : y = -0.5$$

- Construct the x and y axis.
- Identify P₁, P₂, l₁ and l₂ in the paper.
- Make a fold such that P₁ touches l₁ and P₁ touches l₁ at the same time. The slope m of the resulting line is the solution.
- Find the point (m, 0)

The real solution of $x^3 + 2x + 1$ is **not** rational:

$$x = \frac{\sqrt[3]{\frac{1}{2}\left(\sqrt{177} - 9\right)}}{3^{2/3}} - 2\sqrt[3]{\frac{2}{3\left(\sqrt{177} - 9\right)}}$$

Huzita Axioms

- Given two points P₁ and P₂ there is a unique fold passing through both of them.
- **(a)** Given two points P_1 and P_2 there is a unique fold placing P_1 onto P_2 .
- **③** Given two lines L_1 and L_2 , there is a fold placing L_1 onto L_2 .
- Given a point P and a line L, there is a unique fold perpendicular to L passing through P.
- Given two points P₁ and P₂ and a line L, there is a fold placing P₁ onto L and passing through P₂.
- Given two points P₁ and P₂ and two lines L₁ and L₂, there is a fold placing P₁ onto L₁ and P₂ onto L₂.
- Given a point P and two lines L₁ and L₂, there is a fold placing P onto L₁ and perpendicular to L₂.

Let \mathscr{O} be the set of numbers that are constructible using **origami**.

 \mathscr{A} is the set of numbers that are constructible with **ruler and compass**.

Let \mathscr{O} be the set of numbers that are constructible using **origami**.

 \mathscr{A} is the set of numbers that are constructible with **ruler and compass**.

 $\mathscr{A}\subsetneq \mathscr{O}$

Let \mathscr{O} be the set of numbers that are constructible using **origami**.

- $\alpha \in \mathscr{O} \quad \iff \quad \alpha \text{ is constructible by marked ruler}$
 - $\iff \alpha$ is constructible by intersecting conics
 - $\iff \alpha$ lies on a 2-3 tower $\mathbb{Q} = F_0 \subseteq F_1 \subset \cdots \subset F_n$
 - $\iff \qquad \alpha \text{ is algebraic over } \mathbb{Q} \text{ with minimal} \\ \text{polynomial of degree } 2^k 3^l$