(2.31) Output: The set of integral points on X.

2. Definition

Set up. • X/Q nice curve of genus g≥1. p prime of good reduction. · Fix the following: - a branch $\log_p: \mathbb{Q}_p^* \longrightarrow \mathbb{Q}_p$ -an idèle class character $\chi: |A_{\mathbb{Q}}^* \to \mathbb{Q}_{\mathbb{P}}$ (continuous homomorphism that decomposes as a sum of local characters). - A splitting s of the Hodge filtration on $H'_{dR}(X/\mathbb{Q}_p)$ such that ker(s) is isotropic with respect to the cup product pairing. - A basis for $H_{dR}(X)$, $\{w_0, \ldots, w_{2q-1}\}$, with $\{w_0, \ldots, w_{g-1}\} \in H^0(X_{\mathbb{Q}_0}, \Omega')$. -A lift ϕ of Frobenious

Definition. The cyclotomic p-adic height pairing is
(coleman-Guor) a symmetric bi-additive pairing

$$D_{iv}^{\circ}(X) \times D_{iv}^{\circ}(X) \longrightarrow Q_{p}$$

 $(D_{v}, D_{2}) \longmapsto h(D_{1}, D_{2})$
such that $D_{isjoint}$ support
(i) $h(D_{v}, D_{2}) = \sum_{\substack{finite \\ V}} h_{v}(O_{v}, D_{2}) + O$
 $= h_{p}(D_{v}, D_{2}) + \sum_{\substack{f \neq p \\ I \neq p}} h_{f}(D_{v}, D_{2})$
 $= \int_{O_{2}} W_{D_{1}} + \sum_{\substack{f \neq p \\ I \neq p}} M_{f} \log_{p} l$.
(colorman integral Q_{v} , Intersection mult.
(a) For $B \in Q(X)^{*}$, we have
 $h(D, \operatorname{div}(B)) = O$
Note: Part (2) implies that the induced pairing
 $h: J(Q) \times J(Q) \longrightarrow Q_{p}$
is a bilinear pairing.

3.
$$h_{p}(D_{1}, D_{2}) = \int_{D_{2}} w_{D_{1}}$$

Construction of WD. $T(\Omega_p) := \begin{cases} Differentials with at most simple poles and \\ integer residues \end{cases}$

Res:
$$T(\mathbb{Q}_{p}) \longrightarrow D_{iv}^{\circ}(\chi)$$

 $w \longmapsto \sum_{p} (\operatorname{Res}_{p}(w)) P.$

Induces

$$0 \longrightarrow H^{0}(X_{Rp}, \Omega') \longrightarrow T(R) \xrightarrow{\text{Res}} D_{i}v^{\circ}(X) \longrightarrow 0$$

$$W_{D_{i}} \in T(Rp) \text{ and } Res(W_{D_{i}}) = D_{i}$$
Example. X hyperelliptic curve $y^{2} = f(x)$, $D = P - Q$,
(2.14) where P and Q are non-Weierstrass
points. Then

$$W_{D} = \frac{dx}{2y} \left(\frac{y+y(P)}{x-x(P)} - \frac{y+y(Q)}{x-x(Q)} \right) \text{ or }$$

$$M W_{D} = \frac{dx}{2y} \left(\frac{y+y(P)}{x-x(P)} - \frac{y+y(Q)}{x-x(Q)} \right) + \Lambda,$$
where M is a holomorphic differential.

Fix Move to
$$J(\mathbb{Q}_p)$$

 $T_p(\mathbb{Q}_p) = \left\{ \frac{df}{f} \mid f \in \mathbb{Q}_p(x)^* \right\}$ (Res $(\frac{df}{f}) = \operatorname{div} f$)
Then, $T_L(\mathbb{Q}_p) \cap H^{\circ}(X_{\mathbb{Q}_p}, \Omega') = 0$ and we get:
 $0 \longrightarrow H^{\circ}(X_{\mathbb{Q}_p}, \Omega') \longrightarrow T(\mathbb{Q}_p)$
 $T_L(\mathbb{Q}_p) \longrightarrow T(\mathbb{Q}_p)$

In set up, we fixed a splitting s of the Hodge filtration on $H'_{dR}(X/\mathbb{Q}_p)$ such that $\ker(s)$ is isotropic with respect to the cup product pairing. Let $W:= \ker(s) \subseteq H'_{dR}(X/\mathbb{Q}_p)$.

Then there is a cannonical homomorphism $\Psi: T(\mathbb{Q}_p)/T_l(\mathbb{Q}_p) \longrightarrow H_{dR}'(X)$

such that
(1)
$$\Psi$$
 is the identity on differentials of the lst kind.
(2) Ψ sends 3rd kind differentials to 2nd kind modulo
exact differentials
Given DE Div^o(X), WD is defined as the
unique differential of the 3rd kind with
Res(ω_D) = D and $\Psi(\omega_D) \in W$.

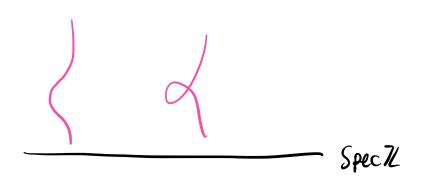
Algorithm Input: D₁, D₂
$$\in$$
 D₁v^o(X)
(2.22) Output: h_p(D₁, D₂)
(1) let w $\in T(\mathbb{Q}_p)$ with $\operatorname{Res}(\omega) = D_1$
(2) Compute $\Psi(\omega) = \sum_{i=0}^{2g-1} \alpha_i \omega_i \in H_{dR}(X)$
 $\omega_{D_1} = \omega - \sum_{i=1}^{2g-1} \alpha_i \omega_i \qquad \begin{pmatrix} U_{sing} & cop \\ preduct \end{pmatrix}$
(3) Compute the Coleman integral:
 $\int_{D_2} W_{D_1}$

4. $h_1(D_1, D_2)$, $l \neq p$.

Given X and D_1 , $D_2 \in D_i v^{\circ}(X)$ with disjoint support, we define D_i as an extension of D_i to a regular model X of X_{RL} such that D_i is has trivial intersection with all vertical divisors. Then M_{ℓ}

$$h_{l}(D_{1}, D_{2}) = (D_{1} \cdot D_{2}) \log_{p}(l)$$

Intersection multiplicity



5=1. Why?
Algorithm. Input: X/Q as in the first theorem.
(2.3) Output: The set of integral points on X.
(1) D₁,..., Dg
$$\in$$
 Div⁰(X) basis for $J(Q) \otimes Q$.
(1) D₁,..., Dg \in Div⁰(X) basis for $J(Q) \otimes Q$.
(1) D₁,..., Dg \in Div⁰(X) basis for $J(Q) \otimes Q$.
(1) D₁,..., Dg \in Div⁰(X) basis for $J(Q) \otimes Q$.
(2) Compute h(D₁, D₁).
(2) Compute $\{W_i\}$ for $0 \le i \le g-1$.
(This is $[W_i] \cup [W_j] = \delta_{ij}$).
(3) Expand $\Theta(z) := -2 \sum_{i=0}^{2-1} \int W_i W_i$ as a power series
in each residue disk D not containing ∞ .
Compute at Z_P -point P(D), $\Theta(P)$ and a local
coordinate z_P at P

let Z be the collection of such points.