2.2 P-adic heights on Jacobians of curves

$$
\binom{\text { Thanks to Grant and }}{\text { Sachi Heshimoto }}
$$

1. Why? We can use p-adic heights $h\left(D_{1}, D_{2}\right)$ to study integral points.
Theorem Suppose:
(Coodlayy 2.30) - $f(x) \in \mathbb{Z}[x]$, monic and separable, $\operatorname{deg} f=2 g+1>3$,

- $U:=\operatorname{Spec}\left(\mathbb{Z}[x, y] /\left(y^{2}-f(x)\right)\right.$,
- X normalization of the projective closure of the generic fiber of U,
- $J:=\operatorname{Jac}(X), \quad \operatorname{rk} J(\mathbb{Q})=g$,
- P prime of good reduction such that

$$
J(\mathbb{Q}) \otimes \mathbb{Q}_{p} \xrightarrow{\sim} H^{0}\left(X_{\mathbb{Q}_{p}}, \Omega^{\prime}\right)^{*}
$$

Then there are computable constants $\alpha_{i j} \in \mathbb{Q}_{p}$ s.t.

$$
\rho(z):=\theta(z)-\sum_{0 \leq i \leq j \leq g-1} \alpha_{i j} \int_{\infty}^{z} w_{i} \int_{\infty}^{z} w_{j}
$$

vanishes on $U(\mathbb{Z}[1 / p])$.
Main idea of the proof: decompose $h(P-\infty, P-\infty)$ in two ways.
Algorithm. Input: X / \mathbb{Q} as in the previous theorem. (2.31) Output: The set of integral points on X.
2. Definition

Set up. - X / Q nice curve of genus $g \geqslant 1$.

- p prime of good reduction.
- Fix the following:
- a branch $\log _{p}: \mathbb{Q}_{p}^{*} \longrightarrow \mathbb{Q}_{p}$
- an idèle class character $X: \mathbb{A}_{\mathbb{Q}}^{*} / \mathbb{Q}^{*} \rightarrow \mathbb{Q}_{P}$ (continuous homomorphism that decomposes as a sum of local characters).
- A splitting s of the Hodge filtration on $H_{d R}^{\prime}\left(X / \mathbb{Q}_{p}\right)$ such that $\operatorname{ker}(s)$ is isotropic with respect to the cup product pairing.
- A basis for $H_{d R}^{\prime}(X),\left\{\omega_{0}, \ldots, \omega_{2 g-1}\right\}$, with $\left\{\omega_{0}, \ldots, \omega_{g-1}\right\} \in H^{0}\left(X_{\mathbb{Q}_{p}}, \Omega^{\prime}\right)$.
- A lift ϕ of Frobenious

Definition. The cyclotomic p-adic height pairing is (Coleman-Gwos) a symmetric bi-additive pairing

$$
\begin{aligned}
D_{i v}{ }^{0}(x) \times D_{i v}{ }^{0}(x) & \longrightarrow \mathbb{Q}_{p} \\
\left(D_{1}, D_{2}\right) & \longmapsto h\left(D_{1}, D_{2}\right)
\end{aligned}
$$

such that Disjoint support
(1)

$$
\begin{aligned}
h\left(D_{1}, D_{2}\right) & =\sum_{\substack{\text { finitely } \\
\text { primes }}} h_{v}\left(D_{1}, D_{2}\right)+0 \\
& =h_{p}\left(D_{1}, D_{2}\right)+\sum_{l \neq p} h_{l}\left(D_{1}, D_{2}\right) \\
& =\underbrace{\int_{D_{2}} \omega_{D_{1}}}_{\text {Coleman integral }}+\sum_{l \neq p} \underbrace{m_{l}}_{\substack{0 \\
\mathbb{Q}}} \log _{p} l .
\end{aligned}
$$

\mathbb{Q}, Intersection mull.
(2) For $\beta \in \mathbb{Q}(X)^{*}$, we have

$$
h(D, \operatorname{div}(\beta))=0
$$

Note: Part (2) implies that the induced pairing

$$
h: J(\mathbb{Q}) \times J(\mathbb{Q}) \rightarrow \mathbb{Q}_{p}
$$

is a bilinear pairing.

$$
\text { 3. } h_{P}\left(D_{1}, D_{2}\right)=\int_{D_{2}} w_{D_{1}}
$$

Construction of Wo,

$$
\begin{aligned}
& T\left(\mathbb{Q}_{p}\right):=\left\{\begin{array}{r}
D_{\text {ifferentials }} \text { with at most simple poles and } \\
\text { integer residues }
\end{array}\right\} \\
& \text { Res: } T\left(\mathbb{Q}_{p}\right) \longrightarrow D_{i v}{ }^{\circ}(x) \\
& w \longmapsto \sum_{p}\left(\operatorname{Res}_{p}(w)\right) P .
\end{aligned}
$$

Induces

$$
0 \longrightarrow H^{0}\left(X_{\mathbb{Q}_{p}}, \Omega^{\prime}\right) \longrightarrow T(\mathbb{Q}) \xrightarrow{\text { Res }} \operatorname{Div}^{\circ}(x) \longrightarrow 0
$$

$\omega_{D_{1}} \in T\left(\mathbb{Q}_{p}\right)$ and $\operatorname{Res}\left(\omega_{D_{1}}\right)=D_{1}$
Example. X hyperelliptic curve $y^{2}=f(x), D=P-Q$, (2.14) where P and Q are non-Weierstrass points. Then

$$
\begin{aligned}
& W_{D}=\frac{d x}{2 y}\left(\frac{y+y(P)}{x-x(P)}-\frac{y+y(Q)}{x-x(Q}\right) \quad \text { or } \\
& \& W_{D}=\frac{d x}{2 y}\left(\frac{y+y(P)}{x-x(P)}-\frac{y+y(Q)}{x-x(Q)}\right)+n
\end{aligned}
$$ where η is a holomorphic differential.

Fix: Move to $J\left(\mathbb{Q}_{\mathbb{P}}\right)$

$$
T_{l}\left(\mathbb{Q}_{p}\right)=\left\{\left.\frac{d f}{f} \right\rvert\, f \in \mathbb{Q}_{p}(x)^{*}\right\} \quad\left(\operatorname{Res}\left(\frac{d f}{f}\right)=\operatorname{div} f\right)
$$

Then, $T_{l}\left(\mathbb{Q}_{p}\right) \cap H^{0}\left(X_{\mathbb{Q}_{p}}, \Omega^{\prime}\right)=0$ and we get:

$$
0 \rightarrow H^{0}\left(X_{\mathbb{Q}_{p},} \Omega^{\prime}\right) \rightarrow \frac{T\left(\mathbb{Q}_{p}\right)}{T_{\ell}\left(\mathbb{Q}_{p}\right)} \stackrel{R_{e s}}{ } J\left(\mathbb{Q}_{p}\right) \rightarrow 0
$$

In set up, we fixed a splitting s of the Hodge filtration on $H_{d R}^{\prime}\left(X / \mathbb{Q}_{p}\right)$ such that $\operatorname{ker}(s)$ is isotropic with respect to the cup product pairing.
Let $W:=\operatorname{ker}(s) \subseteq H_{d R}^{\prime}\left(x / \mathbb{Q}_{p}\right)$.
Then there is a cannonical homomorphism

$$
\psi: T\left(\mathbb{Q}_{p}\right) / T_{l}\left(\mathbb{Q}_{p}\right) \longrightarrow H_{d R}^{\prime}(x)
$$

such that
(1) ψ is the identity on differentials of the $1^{1^{t}}$ kind.
(2) ψ sends $3^{\text {rd }}$ kind differentials to $2^{\text {nd }}$ kind modulo exact differentials
Given $D \in \operatorname{Div}^{\circ}(x), \omega_{D}$ is defined as the unique differential of the $3^{\text {rd }}$ kind with

$$
\operatorname{Res}\left(\omega_{D}\right)=D \quad \text { and } \quad \psi\left(\omega_{D}\right) \in W .
$$

Algorithm . Input: $D_{1}, D_{2} \in \operatorname{Div}^{\circ}(x)$
(2.22) Output: $h_{p}\left(D_{1}, D_{2}\right)$
(1) Let $\omega \in T\left(\mathbb{Q}_{\rho}\right)$ with $\operatorname{Res}(\omega)=D_{1}$
(2) Compote $Q(\omega)=\sum_{i=0}^{2 g-1} a_{i} \omega_{i} \in H_{d R}^{\prime}(x)$

$$
\omega_{D_{1}}=\omega-\sum_{i=1}^{2 g-1} a_{i} \omega_{i} \quad\binom{U_{\text {sing }} c u p}{\text { products }}
$$

(3) Compote the Coleman integral:

$$
\int_{D_{2}} w_{D_{1}}
$$

4. $h_{l}\left(D_{1}, D_{2}\right), \quad l \neq P$.

Given X and $D_{1}, D_{2} \in D_{i v}{ }^{0}(x)$ with disjoint support, we define D_{i} as an extension of D_{i} to a regular model X of $X_{Q_{l}}$ such that D_{1} is has trivial intersection with all vertical divisors. Then

$$
h_{l}\left(D_{1}, D_{2}\right)=\underbrace{\left(D_{1} \cdot D_{2}\right)} \log _{p}(l)
$$

Intersection multiplicity

$5=1 . W h y ?$
Algorithm. Input: X / \mathbb{Q} as in the first theorem. (2.3) Output: The set of integral points on X.
(1) $D_{1}, \ldots, D_{g} \in D_{i v}{ }^{0}(x)$ basis for $J(\mathbb{Q}) \otimes \mathbb{Q}$.

Compote $h\left(D_{i}, D_{j}\right)$.
Another basis for $J(\mathbb{Q}) \otimes \mathbb{Q}$ is:

$$
\frac{1}{2}\left(f_{k} f_{l}+f_{l} f_{k}\right) \text {, where } \quad f_{i}(p):=\int_{0}^{p} w_{i}
$$

Solve for $\alpha_{k l}$:

$$
h\left(D_{i}, D_{j}\right)=\sum_{k, k g-1} \frac{\alpha_{k l}}{2}\left(f_{k}\left(D_{i}\right) f_{l}\left(D_{j}\right)+f_{l}\left(D_{i}\right) f_{k}\left(D_{j}\right)\right)
$$

(2) Compute $\left\{\overline{w_{i}}\right\}$ for $0 \leq i \leq g-1$. (This is $\left[w_{i}\right] \cup\left[w_{j}\right]=\delta_{i j}$).

$$
h_{0}^{(z-\infty, z-\infty)}
$$

(3) Expand $\theta(z):=-2 \sum_{i=0}^{g-1} \int w_{i} \overline{w_{i}}$ as a power series in each residue disk D not containing ∞. Compute at \mathbb{Z}_{P}-point $P \in D, \theta(P)$ and a local coordinate z_{p} at P
(4) Use intersection theory to compute the finite set Se_{e} of all possible values of

$$
h_{1}(z-\infty, z-\infty)
$$

for bad primes ℓ and integral $X\left(\mathbb{Q}_{l}\right)$.
Obtain a finite set $\int \subseteq \mathbb{Q}_{p}$ st.
TL -points!

$$
\sum_{l \neq p} h_{l}(p-\infty, P-\infty) \in S \text { for } P \in U\left(\mathbb{Z}\left[\frac{1}{p}\right]\right)
$$

(5) Expand $p(z)=\theta(z)-\sum_{0 \leq i \leq j \leq g-1} \alpha_{i j} \int_{\infty}^{z} w_{i} \int_{\infty}^{z} w_{j}$ in
each residue disk, set it equal to each value in S, solve for all $z \in U\left(\mathbb{Z}_{p}\right)$ such that $\rho(z) \in S^{\prime}$.
let Z be the collection of such points.

