First Homology of Quotients of Fermat Curves

Juanita Duque-Rosero
Joint work with Rachel Pries
DANTS, May 18th, 2021

Outline

(1) Overview of the problem
(2) Quotients of Fermat curves
(3) Homology and modular symbols
(4) Describing the classifying element
(5) What comes next?

Overview

Let X be a nice curve X defined over a number field K.
The étale fundamental group of X is $\pi=[\pi]_{1}$.
The action of G_{K} on π gives information on the arithmetic of X.

What about smaller bits?

Overview

Let X be a nice curve X defined over a number field K. geometric
The étaleلfundamental group of X is $\pi=[\pi]_{1}$.
The action of G_{K} on π gives information on the arithmetic of X.

Consider $[\pi]_{m}=\overline{\left[\pi,[\pi]_{m-1}\right]}$.

Proposition [Hain, 97]

There is an isomorphism of G_{K}-modules

$$
[\pi]_{2} /[\pi]_{3} \cong\left(H_{1}(X) \wedge H_{1}(X)\right) / \operatorname{Im}(\mathscr{C})
$$

where \mathscr{C} is the dual map of the cup product map $H_{1}(X) \wedge H_{1}(X) \rightarrow H_{2}(X)$.

$$
V_{k}: v^{p}=u(1-u)^{k}
$$

Let W_{k} be the projective curve with this affine patch.

Theorem [D. \& Pries, 21]

For $p \geq 3$ a prime number and $k \leq p-2$ such that $p \equiv 1 \bmod k+1$, a generator ρ for $\operatorname{Im}(\mathscr{C})$ is given by the image in $H_{1}\left(W_{k}\right) \wedge H_{1}\left(W_{k}\right)$ of the following element Δ of $H_{1}\left(V_{k}\right) \wedge H_{1}\left(V_{k}\right)$:

$$
\Delta=\sum_{1 \leq i<j \leq p-1} c_{i, j}[\underbrace{\left[E_{i}\right] \wedge\left[E_{j}\right]}
$$

where

$$
c_{i, j}= \begin{cases}1 & j-i \equiv 0 \bmod k+1 \\ -1 & j-i \equiv 1 \bmod k+1 \\ 0 & \text { otherwise }\end{cases}
$$

Example: $y^{5}=x(1-x)$

3

$$
\begin{array}{ll}
p=5 & y^{p}=x(1-x) \\
k=1
\end{array}
$$

$$
\begin{aligned}
\Delta= & E_{1} \wedge\left(-E_{2}+E_{3}-E_{4}\right) \\
& +E_{2} \wedge\left(-E_{3}+E_{4}\right) \\
& +E_{3} \wedge\left(-E_{4}\right) .
\end{aligned}
$$

Definition

Given an integer $n \geq 2$, the Fermat curve of degree n is the projective curve given by the equation

$$
F: X^{n}+Y^{n}=Z^{n}
$$

Note: We fix an odd prime number p. We only consider the Fermat curve of degree p.

Facts we need

- There is a $\mu_{p} \times \mu_{p}$ action on F given by

$$
\left(\zeta_{p}^{i}, \zeta_{p}^{j}\right) \cdot[X: Y: Z]=\left[\zeta_{p}^{i} X: \zeta_{p}^{j} Y: Z\right]
$$

- Let $x=X / Z$ and $y=Y / Z$. For all $r, s \geq 1$ such that $r+s \leq p-1$, we have that

$$
\omega_{r, s}:=x^{r-1} y^{s-1} \frac{d x}{y^{n-1}}
$$

is a holomorphic one-form on F. Moreover, a basis for the holomorphic one-forms of F is

$$
\left\{\omega_{r, s} \mid r, s \geq 1, r+s \leq p-1\right\} .
$$

Definition

For $k \in\{1, \ldots, p-2\}$, we let $\boldsymbol{W}_{\boldsymbol{k}}$ be the quotient of the Fermat curve by the action of $\left(\zeta_{p}, \zeta_{p}^{-k^{-1}}\right) \in \mu_{p} \times \mu_{p}$.

Affine chart:

$$
V_{k}: v^{p}=u(1-u)^{k}
$$

Definition

For $k \in\{1, \ldots, p-2\}$, we let $\boldsymbol{W}_{\boldsymbol{k}}$ be the quotient of the Fermat curve by the action of $\left(\zeta_{p}, \zeta_{p}^{-k^{-1}}\right) \in \mu_{p} \times \mu_{p}$.

Affine chart:

$$
V_{k}: v^{p}=u(1-u)^{k}
$$

$v_{k}: v^{p}=u(1-u)^{k}$

$x^{p}+y^{p}=1$
$u=x^{p}$

- The genus of W_{k} is $\frac{p-1}{2}$.
- The rank of $H_{1}\left(W_{k} ; \mathbb{Z}\right)$ is $p-1$.
$V^{P}=U(1-U)^{K} \cdot$ An automorphism of W_{k} is $\epsilon(u, v)=\left(u, \zeta_{p} v\right)$.
- $W_{k} \rightarrow \mathbb{P}^{1}$ is a cover of degree p that is branched at 0,1 and ∞.

Modular Curves

- G is a finite index subgroup of $\operatorname{PSL}_{2}(\mathbb{Z})$,
- $\tilde{\mathfrak{H}}=\mathfrak{H} \cup \mathbb{P}^{1}(\mathbb{Q})$,
- for $z \in \tilde{\mathfrak{H}}$ and $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right] \in \operatorname{PSL}_{2}(\mathbb{Z}),\left[\begin{array}{ll}a & b \\ c & d\end{array}\right] \cdot z:=\frac{a z+b}{c z+d}$,
- $X_{G}(\mathbb{C}):=\tilde{\mathfrak{H}} / G$ is an irreducible projective algebraic curve,
- $\pi: \tilde{\mathfrak{H}} \rightarrow X_{G}(\mathbb{C})$.

Example [Rohrlich, 77]

$\Phi(p):=\left\langle A^{p}, B^{p}, \Gamma(2)^{\prime}\right\rangle$, where $\Gamma(2)^{\prime}$ is the commutator of $\Gamma(2)$. The modular curve $X_{\Phi(n)}$ is isomorphic to the Fermat curve of degree n.

Recall: W_{k} is the quotient of F by the automorphism $\left(\zeta_{p}, \zeta_{p}^{-\left(k^{-1}\right)}\right)$.
Then W_{k} is isomorphic to $X_{\Phi_{k}}$, where

$$
\Phi_{k}:=\left\langle A B^{-\left(k^{-1}\right)}, A^{p}, B^{p}, \Gamma(2)^{\prime}\right\rangle .
$$

Recall: W_{k} is the quotient of F by the automorphism $\left(\zeta_{p}, \zeta_{p}^{-\left(k^{-1}\right)}\right)$.
Then W_{k} is isomorphic to $X_{\Phi_{k}}$, where

$$
\Phi_{k}:=\left\langle A B^{-\left(k^{-1}\right)}, A^{p}, B^{p}, \Gamma(2)^{\prime}\right\rangle .
$$

The right cosets of Φ_{k} in $\mathrm{PSL}_{2}(\mathbb{Z})$ are:

$$
\begin{aligned}
& \left\{\left[A^{r} \alpha_{j}\right] \mid 0 \leq r \leq p-1,0 \leq j \leq 5\right\} \\
& \quad \text { Explicit }
\end{aligned}
$$

Modular Symbols

Definition

Let $\alpha, \beta \in \tilde{\mathfrak{H}}$, the modular symbol $\{\alpha, \beta\}$ is the element of $\operatorname{Hom}_{\mathbb{C}}\left(H^{0}\left(X_{G}(\mathbb{C}), \Omega^{1}\right), \mathbb{C}\right)$ given by

$$
\{\alpha, \beta\}:\left(\omega \mapsto \int_{\alpha}^{\beta} \pi^{*} \omega\right)
$$

Note: We can assume that $\{\alpha, \beta\} \in H_{1}\left(X_{G}(\mathbb{C}), \mathbb{R}\right)$ because of the isomorphism

$$
\begin{array}{ccc}
H_{1}\left(X_{G}(\mathbb{C}), \mathbb{R}\right) & \rightarrow & \operatorname{Hom}_{\mathbb{C}}\left(H^{0}\left(X_{G}(\mathbb{C}), \Omega^{1}\right), \mathbb{C}\right) \\
\gamma & \mapsto & \left(\omega \mapsto \int_{\gamma} \pi^{*} \omega\right)
\end{array}
$$

There is an action of $\operatorname{PSL}_{2}(\mathbb{Z})$ on modular symbols: for $g \in \operatorname{PSL}_{2}(\mathbb{Z})$,

$$
g\{\alpha, \beta\}=\{g \cdot \alpha, g \cdot \beta\}
$$

We let $[g]:=g\{0, i \infty\}$.n X_{G} G_{G}, this action is the same on elements
of the same right coset

There is an action of $\mathrm{PSL}_{2}(\mathbb{Z})$ on modular symbols: for $g \in \mathrm{PSL}_{2}(\mathbb{Z})$,

$$
g\{\alpha, \beta\}=\{g \cdot \alpha, g \cdot \beta\}
$$

We let $[g]:=g\{0, i \infty\}$.

Lemma

The group of modular symbols for W_{k} is a free group of rank p, generated by

$$
\left\{\left[A^{r} \tau\right]: 0 \leq r \leq p-1\right\}
$$

where $\tau=\left[\begin{array}{ll}0 & -1 \\ 1 & -1\end{array}\right]$ and $A=\left[\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right]$.

First homology of $H_{1}\left(W_{k}, \mathbb{Z}\right)$

Theorem [Manin, 72]

Any class in $H_{1}\left(X_{G}, \mathbb{Z}\right)$ can be represented as a sum

$$
\sum_{m} n_{m}\left[g_{m}\right]
$$

of modular symbols, where $\sum_{m} n_{m}\left(\pi\left(g_{m} \cdot i \infty\right)-\pi\left(g_{m} \cdot 0\right)\right)=0$.

Proposition

The homology group $H_{1}\left(W_{k}, \mathbb{Z}\right)$ is generated by

$$
\gamma_{r}:=[\tau]-\left[A^{r} \tau\right] \text { for } 1 \leq r \leq(p-1)
$$

Explicit formulas

Proposition

The relative homology $H_{1}\left(W_{k},\{0,1\} ; \mathbb{Z}\right)$ is generated by

$$
\alpha_{i}=\left(\begin{array}{c}
\left.t \mapsto\left(t, \zeta_{p}^{i} \sqrt[p]{t(1-t)^{k}}\right)\right), ~
\end{array}\right.
$$

for $0 \leq i \leq p-1$. $[0,1]$

Note: $\varepsilon(x, y)=(x, 3, y)$ $\varepsilon\left(\alpha_{0}\right)=\alpha_{1}$
$H_{1}\left(w_{k},\{0,1\}, \mathbb{Z}\right)$ is a
free $\mathbb{Z}\left[u_{p}\right]-\bmod$ of rank 1 !

Construction of Δ

Goal: To find a generator for the image of the map

$$
H_{2}\left(W_{k}\right) \rightarrow H_{1}\left(W_{k}\right) \wedge H_{1}\left(W_{k}\right)
$$

the dual of the cup product. Why?

$$
[\pi]_{m}=\overline{\left[\pi,[\pi]_{m-1}\right]}
$$

Theorem, [Labute, 70]

Let F be the free profinite group on $2 g$ generators and consider the graded Lie algebra $\operatorname{gr}(\pi)=\oplus_{m \geq 1}[\pi]_{m} /[\pi]_{m+1}$. Then,

$$
\operatorname{gr}(\pi) \cong \operatorname{gr}(F) / \overline{\langle\rho\rangle}
$$

where ρ generates the image of $H_{2}\left(W_{k}\right) \rightarrow H_{1}\left(W_{k}\right) \wedge H_{1}\left(W_{k}\right)$.

Galois actions

$$
\operatorname{gr}(\pi) \cong \operatorname{gr}(F) / \overline{\langle\rho\rangle}
$$

Galois actions

$$
\operatorname{gr}(\pi) \cong \operatorname{gr}(F) / \overline{\langle\rho\rangle}
$$

It suffices to obtain a complete description of the ideal $\langle\rho\rangle$ and the action of μ_{p} on it.
We
have
$a n$
action
on
HI.

Presentation of the fundamental group

Let $U=W_{k} \backslash\{(0,0),(1,0), \infty\}$ and we choose a base point b as a tangential point to $(0,0)$. There exist loops a_{i}, b_{i} for $1 \leq i \leq g$ and c, with base point b, such that $\pi_{1}(U)$ has a presentation

$$
\pi_{1}(U)=\left\langle a_{i}, b_{i}, c \mid i=0, \ldots, g\right\rangle /\left(\prod_{i=0}^{g}\left[a_{1}, b_{i}\right]\right) c
$$

We can assume that the loop c circles the punctures $(0,0),(1,0)$ and ∞.

Presentation of the fundamental group

Let $U=W_{k} \backslash\{(0,0),(1,0), \infty\}$ and we choose a base point b as a tangential point to $(0,0)$. There exist loops a_{i}, b_{i} for $1 \leq i \leq g$ and c, with base point b, such that $\pi_{1}(U)$ has a presentation

$$
\pi_{1}(U)=\left\langle a_{i}, b_{i}, c \mid i=0, \ldots, g\right\rangle /\left(\prod_{i=0}^{g}\left[a_{1}, b_{i}\right]\right) c
$$

We can assume that the loop c circles the punctures $(0,0),(1,0)$ and ∞.
Fact: The element

$$
\Delta=\sum_{i=0}^{g} a_{i} \wedge b_{i}
$$

generates the kernel of $H_{2}(U) \rightarrow H_{1}(U) \wedge H_{1}(U)$.

Example: $\boldsymbol{v}^{5}=\boldsymbol{u}(1-\boldsymbol{u})$

What is next?

- Generalize the formula that we obtained for all $k \leq p-2$.
- Describe explicitly the action of the absolute Galois group on the homology.
- Can this idea be generalized to other families of curves?

$$
V_{k}: v^{p}=u(1-u)^{k}
$$

Let W_{k} be the projective curve with this affine patch.

Theorem [D. \& Pries, 21]

For $p \geq 3$ a prime number and $k \leq p-2$ such that $p \equiv 1 \bmod k+1$, a generator ρ for $\operatorname{Im}(\mathscr{C})$ is given by the image in $H_{1}\left(W_{k}\right) \wedge H_{1}\left(W_{k}\right)$ of the following element Δ of $H_{1}\left(V_{k}\right) \wedge H_{1}\left(V_{k}\right)$:

$$
\Delta=\sum_{1 \leq i<j \leq p-1} c_{i, j}\left[E_{i}\right] \wedge\left[E_{j}\right]
$$

where

$$
c_{i, j}= \begin{cases}1 & j-i \equiv 0 \bmod k+1 \\ -1 & j-i \equiv 1 \bmod k+1 \\ 0 & \text { otherwise }\end{cases}
$$

