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Outline

e General introduction: Diophantine geometry.

Part 1: triangular modular curves of low genus.

e Basic definitions: triangle groups and triangular modular curves.
e Main theorem and main algorithm for prime level.

e How bad is composite level?

Part 2: geometric quadratic Chabauty.

e Chabauty’s theorem and quadratic Chabauty.

e Geometric quadratic Chabauty.

e A comparison theorem and an example.



Welcome to Diophantine Geometry!

Goal. To describe rational solutions for systems of polynomial equations
X :fxg,...,x) =0,

where f(x,, ...,x,) has rational coefficients.

Examples. “
2 1Y
1. Fermat’s Last Theorem: for all n» > 3, there are no non-trivial
solutions for 7T N
, |
|
x"+y"—7"=0. 2 {1 |
. . et F(4)(R
2. Linear algebra over the rationals. FgﬁggR;
Y F(8)(R)

3. f(x,y) =0 gives a plane curve.



Example: Elliptic Curves

An elliptic curve (over Q) R4
consists on solutions of the Q@a\ 8\0‘5395 | COW\P\QX 9\“35"/5 -0
equation 9

2 oy
v = f(x), vl
J

where f(x) is a polynomial of
degree 3 defined over Q.

\a Ice

The arithmetic of elliptic curves is rare and amazing! The solutions have

the structure of a finitely generated abelian group (Mordell’s
Theorem):

E(Q) = E(Q)p, X Z" .



E(@)Tor

Mazur’s Theorem (1978). Let E be an elliptic curve over Q. Then the
only possibilities for E(Q), are:

- ZINZ, where 1 < N<10or N=12; or
o ZI2Z x ZINZ, where 1 <N <4,

Moreover, for each of these possibilities, there are infinitely many
curves with that prescribed torsion.

Key idea: we want to understand elliptic curves with torsion group
of a certain order.

Modular Curves!



Modular Curves

There is an action of PSL, (Z) on #,
the upper-half complex plane:

a b ClZ"‘b
{ = :
c d cz + d

By taking the quotient of % by this

action, we obtain a Riemann surface.

We call this a modular curve.




Modular Curves

We can consider quotients by the
action of principal congruence
subgroups

Fl(N)z{(a Z) a=d=1 mod Nand ¢c=0 modN}
C

and we also obtain modular curves.

Rational points on these curves
represent elliptic curves, together % 0
W|th 3 pOint Of Order N = .»!.m.‘./ﬁ‘ ’&\\.,.SA.gé.c %’ﬂz‘.//ﬁ\ /h\\.ﬂgk

Fundamental domain of I ';(4). By Paul Kainberger.




Goal: To Describe Rational Solutions

We call a solution (x;, ..., x,) € Q a rational point and denote the set
of rational points as X(Q).

V4 5x% = 6x22 + 672 + 26x%yz + 10xgl P pEfIEe22. 22 — 40xy22 + 249222 4+ 32x23 — 16y23 = 0

yA
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By JenngerBglakrighnanand
Sachi Hasimoto



Goal: To Describe Rational Solutions
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a’ + b?

(5,12)

(3,4)

C

(7.24)

(8,15)

1 2 3 45 6 7 8 9

y* 4 5x* — 6x%y? 4+ 6x37 4 26x%yz + 10xy%z — 10y°z — 32x%2% — 40xyz? + 24y%z% + 32x7° — 16yz° = 0

By Jennifer Balakrishnan
and Sachi Hasimoto

With Meaning!



Two Problems...

1. Find meaningful polynomial equations to solve. (Parlr l)

2. (Provably) Find all rational points. (POVJF 2)



How Many Points Can There Be?

Y1
o
4
3
2
1

1 2 3 4 5°

Faltings’s Theorem (1983). Let C be a nonsingular algebraic curve
of genus ¢ > 2. Then the set of rational points C(Q) is finite.



Part 1: Triangular Modular
Curves

'(Toivﬂ’ WOYK with  John \loig\rA'

Goal: to find meaningful polynomial equations to solve (by genus).



Goal: to find meaningful polynomial equations to solve (by genus).

Theorem (DR & Voight, 2023). For any g € Z,,, there are only

finitely many Borel-type triangular modular curves Xy(a, b, c; NN)

and X,(a, b, c;N) of genus g with nontrivial admissible level. The
number of curves of genus at most 2 are as follows:




Triangle Groups

e Leta b,ceZ ,uU{o}. The triangle group is
a group with presentation:

A(a,b,c) :=(5,,6,,6.|8% =5, = 85 = 5,6,6, = 1).

e \We only consider hyperbolic triangles,
where

1 1 1
ya,b,c) =—+—+—-1<0.
a b c




Triangular Modular Curves (TMC's)

There is an embedding
A & PSL,(R)

that can be explicitly given by square
roots, sin(xz/s), and cos(xz/s) for s € {a, b, c}.

Then we can take the quotient
X(1)=X(a,b,c;1) .= A\F,

and the resulting Riemann surface is a
triangular modular curve.




Principal Congruence Subgroups

e Let p be a prime with p + 2abc. We consider the number field

27 21 21

E=E@a,b,c) .= Q (cos (—), COS (—), COS (—),
a b C

(2)= ()= (5))
cos| — ]Jcos| — )cos|— .
a b C
e Let p/p be a prime of E. There is a homomorphism
7y, 0 A = PXLy(Zg/p)e

e Theorem (Clark & Voight, 2019). The group is PSL, or PGL, depending on
the behavior of p in an explicit extension of E.



Principal Congruence Subgroups

7,0 A — PXLy(Zz/p)

The principal congruence subgroup of X(p) @@é
level p is

['(p) := kerz, J A.

\4 v

The triangular modular curve of full |
level p is X(1) ~1 —

X(p) =X(a,b,c;p) =1 (pI\#Z

Remark. We can extend this definition to primes p relatively prime to p(a, b, c) - by



Isomorphic Curves

Example. Consider the triples (2,3,c) with ¢ = p*,

E, = E2,3,¢) = Qlhy,) = Q&)™ |

X(2,3,p; p)
The prime p is totally ramified in £ so F, ~ [, for l
b, | p. Thus ol




Isomorphic Curves

A hyperbolic triple (a, b, c) is admissible for

X(2,3,p% po) p if the order of x,(5,) is s for all s € {a,b,c}.
X(2,3,p; p)
l Without loss of generality, for
pl ‘ the rest of this talk (a, b, ¢

represents a hyperbolic
admissible triple.



Congruence Subgroups

Let H, < PXL,(Z./p) be the image of the upper
triangular matrices in XL,(Z./p).

Co(p) = Tolas b, c; p) == ;' (Hy). X(p)
We define the TMC with level p: \
Xo(p)
Xo(p) = Xy(a,b,c; p) =Ty(p)\Z. /
Then we get Belyi maps to X(1) X(1) ~ pl

X(p) = Xo(p) — X(1).
We can also construct X,(a, b, c; p) and we get

X(p) = Xi(p) = Xo(p) — X(1)



Ramification

Lemma (DR & Voight, 2023). Let G = PXLy(F) with ¢ =p" for p prime.
(a,b,c) is a hyperbolic admissible triple. Let 6, € G have order s > 2 and if
s =2 suppose p = 2. Then the action of s, on G/H, has

0 fixed points if s|(g+ 1),
‘ orbits of length s and < 1 fixed point if s = p,
2 fixed points if s|(g—1).

g+ 1
S

In particular s must divide one between g—1,p,or g+ 1 for all s € {a,b, ¢}
and we understand the ramification of the cover

X,(p) — P!,



TMCs of Bounded Genus

Proposition. Let g, > 0 be the genus of X,(a, b, c; p). Recall that
q := #F,. Then

2(2n+ 1
g < (&o )+1

| x(d/820) |
In particular the number of TMCs X,(a, b, c; p) of genus g, is finite.

We obtain an explicit formula for the genus

¢(Xy(a, b, ¢; p)).



Main Theorem

Theorem (DR & Voight, 2023). For any g€ Z,, there are

finitely many Borel-type triangular modular curves
Xy(a, b, c; p) of genus g with (admissible) prime level p. The
number of curves X (a, b, c; p) of genus g <2 are as follows:

® 76 curves of genus 0;
® 268 curves of genus 1;

e 485 curves of genus 2.



Enumeration Algorithm

Input: g, € Z,,.

Output: A list of (a,b, c;p) such that X,(a, b, c; p) has genus bounded
by g, where p is a prime of E(a,b,c) of norm p.

1. Generate a list of possible g values.
2. For each ¢ find all g-admissible hyperbolic triples (a, b, ¢).
3. Compute the genus g of X,(a, b, c; p) by checking divisibility.

4. If g < g, add (a,b,c;p) to the list lowGenus.



Composite Level

Theorem (DR & Voight, 2023). For any g € Z.,, there are only finitely many

Borel-type triangular modular curves X,y(a, b, c; M) and X,(a, b, c; N) of genus g
with nontrivial admissible level M.

Challenges:

1. The map SL,(Z./N)/{x1} - PGL,(Z./M) might not be injective.
2. Describing admissibility is harder.

3. The genus formula is more complicated.

4. The enumeration algorithm takes significantly longer because we are
computing matrix groups explicitly.



But This is the Beginning...

e Find models of TMCs of low genus and relate them to the
existing database of curves in the LMFDB (at least over Q).

e Describe all rational points (over the field of definition) of
TMCs.

e Conjecture. For all g >0, there are only finitely many
admissible triangular modular curves of genus g.



Pmblm (aledahons ave done with DreerC
Need eqvahons

SLW\ 9-expansions  Find %4 (conds

3 XACTY) in damy of 4, and wse

T‘ 1 e ’it ‘JTFJS Find (%ns { Jew
‘“a"‘ wside CxC et fuat vawsh
om (1!& YIg), xu‘, ;/1 Y and

le\ ‘jqj X | \ /M) Ths givey

// QH&W

Part 2: Geometric Quadratic
Chabauty

oivt work with Sachi Mashimoto and Pim Splier

Goal: to (provably) find all rational points on a curve.



Chabauty’s Theorem

e Let C be a curve (over Q) of genus g > 2.
e Let J be the Jacobian of C.
e Let r be the Mordell-Weil rank of J.

e et p be a prime number.

Chabauty’s Theorem (1941). If r < g, then

1(C(Q)) € Q) NJQ) € J(Q,),

and this intersection is finite.



Chabauty’s Theorem

e Let C be a curve (over Q) of genus g > 2.
e |Let J be the Jacobian of C.
e Let r be the Mordell-Weil rank of J.

e Let p be a prime number.

Chabauty’s Theorem (1941). If 7 < 2, then

1(C(Q)) € 1(C(Q,)) NJ(Q) € JQ),

and this intersection is finite.



e Chabauty—Kim’s Program (2009). To use p-adic methods to determine
C(Q).

e Balakrishnan & Dogra (2018, 2021). The program is made explicit for
r =g and p of good reduction. The method produced a set of p—adic points
containing the rational points.

e The method is then applied to examples:

X, (13), the cursed curve by Balakrishnan, Dogra, Muller, Tuitman, and
Vonk (2019).

- Xy(67)" by Balakrishnan, Best, Bianchi, Lawrence, Muller, Triantafillou,
and Vonk (2021).



Geometric Quadratic Chabauty

Let C be a nice curve of genus ¢ > 2, Mordell-Weil rank r,
and Néron-Severi rank p. Let p be a prime number.

e X is the (smooth locus) of a regular model for C.
T(Z,) Then X™(2) = C(Q).

e J. is the Jacobian of C and J/Z is its Neron model.

e b C(Q)=X"(Z)is a base point.

e ;: X’ — Jis the Abel-Jacobi map.

/ We construct a G”"!-torsor T over J that trivializes X.

Theorem (Edixhoven & Lido, 2021). If r< g+ p -1, then
the following set is finite:

~/vSm =
(XTNZ,) N T(Z) C )




(DR, Hashimoto, and Spelier, 2022). Assume that p is a
prime of good reduction for X;. Assume that r=g, p > 1, and

furthermore the p—adic closure Jo(Q) is finite index in Jg(Q)). Assume
there exists a rational base point b € X(Q). Let X(Q)); be the finite set

of p—adic points defined under these assumptions in the

cohomological quadratic Chabauty method. Then we have the
inclusions

Xo(Q) € #(X™(Z,)) nT(Z) € X(Q,); C Xo(Q,),

and we can explicitly characterize X(Q),\i(X*"(Z,)) N 1(2).



We have r=g =p =2. (X™zZ)nT(Z) C T(Z,)

1. Compute 7: X*" - T(Z,); Via a section.

1(Z) 2. Compute «: Z, - T(Z,);p, With image T(Z), .

X5(Z) T('Z ) 3. A Hensel-like lemma implies that finite
p precision is enough.

sm TN - The set of points of X(Z) reducing to (0, — 1) are
A (Zp) J(ZP) HZ) contained in

{(0,=1),(4-7+0(7%,6 + 0(7%)) }.



e Finish the computation for one missing residue disk.

e Find an example in which the difference between the set of points
given by cohomological quadratic Chabauty and geometric
quadratic Chabauty is made apparent.

e Compute an example of geometric quadratic Chabauty for which
r £ g.

e Does one of our algorithms help to compute p—adic heights away
from p?






Thank You

e John Voight.

e My committee: John Voight (chair), Asher Auel, Pete Clark, and Rosa
Orellana.

e My collaborators Sachi Hashimoto and Pim Spelier.

e Rachel Pries.

e Gracias mama, papa y toda mi familia.

e The Dartmouth Mathematics department, special thanks to DANTS people.

e All of you for being here and being part of this journey.
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Summary

® Theorem (DR & Voight, 2023). For any g € Z.,, there are only finitely many
Borel-type triangular modular curves X,(a, b, c; Jt) and X,(a, b, c; ) of genus g
with nontrivial admissible level .

® We present an explicit algorithm to enumerate all such curves of a fixed genus
and carry out the enumeration for g < 2.

Theorem (DR, Hashimoto, and Spelier, 2023). When the cohomological and the

geometric quadratic Chabauty methods apply, the set of p-adic points produced

by the cohomological method is contained in the set produced by the geometric
method. This difference can be characterized.

We produced algorithms to make the geometric quadratic Chabauty method
explicit for hyperelliptic curves by using p-adic heights.



