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Outline
• General introduction: Diophantine geometry.


Part 1: triangular modular curves of low genus.


• Basic definitions: triangle groups and triangular modular curves.


• Main theorem and main algorithm for prime level.


• How bad is composite level?


Part 2: geometric quadratic Chabauty.


• Chabauty’s theorem and quadratic Chabauty.


• Geometric quadratic Chabauty.


• A comparison theorem and an example.



Welcome to Diophantine Geometry!
Goal. To describe rational solutions for systems of polynomial equations


,


where  has rational coefficients.

X : fi(x1, …, xk) = 0

fi(x1, …, xk)

Examples.


1. Fermat’s Last Theorem: for all , there are no non-trivial 
solutions for


.


2. Linear algebra over the rationals.


3.  gives a plane curve.

n ≥ 3

xn + yn − zn = 0

f(x, y) = 0



Example: Elliptic Curves
An elliptic curve (over ) 
consists on solutions of the 
equation


,


where  is a polynomial of 
degree 3 defined over .

ℚ

y2 = f(x)

f(x)
ℚ

The arithmetic of elliptic curves is rare and amazing!  The solutions have 
the structure of a finitely generated abelian group (Mordell’s 
Theorem):


E(ℚ) ≅ E(ℚ)Tor × ℤr .



Key idea: we want to understand elliptic curves with torsion group 
of a certain order.

Mazur’s Theorem (1978).  Let  be an elliptic curve over . Then the 
only possibilities for  are:


, where  or ; or


, where .


Moreover, for each of these possibilities, there are infinitely many 
curves with that prescribed torsion.

E ℚ
E(ℚ)Tor

ℤ/Nℤ 1 ≤ N ≤ 10 N = 12

ℤ/2ℤ × ℤ/Nℤ 1 ≤ N ≤ 4

E(ℚ)Tor

Modular Curves!



Modular Curves

There is an action of  on , 
the upper-half complex plane:


.


By taking the quotient of  by this 
action, we obtain a Riemann surface.  
We call this a modular curve.

PSL2 (ℤ) ℋ

(a b
c d) z =

az + b
cz + d

ℋ



Modular Curves
We can consider quotients by the 
action of principal congruence 
subgroups





and we also obtain modular curves.


Rational points on these curves 
represent elliptic curves, together 
with a point of order .

Γ1(N) = {(a b
c d) : a ≡ d ≡ 1 mod N and c ≡ 0 mod N}

N
Fundamental domain of . By Paul Kainberger.Γ1(4)



Goal: To Describe Rational Solutions
We call a solution  a rational point and denote the set 
of rational points as .

(x1, …, xk) ∈ ℚk

X(ℚ)

a2 + b2 = c2y4 + 5x4 − 6x2y2 + 6x3z + 26x2yz + 10xy2z − 10y3z − 32x2z2 − 40xyz2 + 24y2z2 + 32xz3 − 16yz3 = 0

By Jennifer Balakrishnan and 
Sachi Hasimoto

y2 = x3 − 2



Goal: To Describe Rational Solutions

a2 + b2 = c2

y4 + 5x4 − 6x2y2 + 6x3z + 26x2yz + 10xy2z − 10y3z − 32x2z2 − 40xyz2 + 24y2z2 + 32xz3 − 16yz3 = 0

By Jennifer Balakrishnan 
and Sachi Hasimoto

y2 = x3 − 2

With Meaning!



Two Problems…

1. Find meaningful polynomial equations to solve.


2. (Provably) Find all rational points.



How Many Points Can There Be?

Faltings’s Theorem (1983).  Let  be a nonsingular algebraic curve 
of genus .  Then the set of rational points  is finite.

C
g ≥ 2 C(ℚ)



Part 1: Triangular Modular 
Curves

Goal: to find meaningful polynomial equations to solve (by genus).



Goal: to find meaningful polynomial equations to solve (by genus).

Theorem (DR & Voight, 2023). For any , there are only 
finitely many Borel-type triangular modular curves  
and  of genus  with nontrivial admissible level.  The 
number of curves of genus at most  are as follows:

g ∈ ℤ≥0
X0(a, b, c; 𝔑)

X1(a, b, c; 𝔑) g
2

Genus 0 1 2

71 190 153

28 51 36

X0(a, b, c; 𝔑)

X1(a, b, c; 𝔑)



Triangle Groups

• Let . The triangle group is 
a group with presentation:


.


• We only consider hyperbolic triangles, 
where


.

a, b, c ∈ ℤ≥2 ∪ {∞}

Δ(a, b, c) := ⟨δa, δb, δc |δa
a = δb

b = δc
c = δaδbδc = 1⟩

χ(a, b, c) :=
1
a

+
1
b

+
1
c

− 1 < 0

za zc

zb

−zc

τa

τb

za zc

zb

−zc

δa

δb

za zc

zb

−zc

τa

τb

za zc

zb

−zc

δa

δb



Triangular Modular Curves (TMC’s)
There is an embedding





that can be explicitly given by square 
roots, , and  for .


Then we can take the quotient


,


and the resulting Riemann surface is a 
triangular modular curve.

Δ ↪ PSL2(ℝ)

sin(π/s) cos(π/s) s ∈ {a, b, c}

X(1) = X(a, b, c; 1) := Δ \ ℋ

Triangle  (Wikimedia)
π
4

,
π
4

,
π
4



Principal Congruence Subgroups
• Let  be a prime with . We consider the number field





• Let  be a prime of . There is a homomorphism


.


• Theorem (Clark & Voight, 2019). The group is  or  depending on 
the behavior of in an explicit extension of .

p p ∤ 2abc

E = E(a, b, c) := ℚ (cos ( 2π
a ), cos ( 2π

b ), cos ( 2π
c ),

cos ( π
a ) cos ( π

b ) cos ( π
c )) .

𝔭/p E

π𝔭 : Δ → PXL2(ℤE /𝔭)

PSL2 PGL2
𝔭 E






The principal congruence subgroup of 
level  is


.


The triangular modular curve of full 
level  is


π𝔭 : Δ → PXL2(ℤE /𝔭)

𝔭

Γ(𝔭) := ker π𝔭 ⊴ Δ

𝔭

X(𝔭) = X(a, b, c; 𝔭) := Γ(𝔭) \ ℋ

Remark.  We can extend this definition to primes  relatively prime to .𝔭 β(a, b, c) ⋅ 𝔡F|E

Principal Congruence Subgroups

X(𝔭)

X(1) ≃ ℙ1



Isomorphic Curves

Example. Consider the triples  with , 
 and  prime.  Then 


. 


The prime  is totally ramified in  so  for 
.  Thus 


. 

(2,3,c) c = pk

k ≥ 1 p ≥ 5

Ek := E(2,3,c) = ℚ(λ2c) = ℚ(ζ2c)+

p E 𝔽𝔭k
≃ 𝔽p

𝔭k ∣ p

X(2,3,pk; 𝔭k) ≃ X(2,3,p; 𝔭1)

X(2,3,pk; 𝔭k)

X(2,3,p; 𝔭)

ℙ1



Isomorphic Curves

A hyperbolic triple  is admissible for 
 if the order of  is  for all .

(a, b, c)
𝔭 π𝔭(δs) s s ∈ {a, b, c}

Without loss of generality, for 
the rest of this talk  
represents a hyperbolic 
admissible triple.

(a, b, c)!

X(2,3,pk; 𝔭k)

X(2,3,p; 𝔭)

ℙ1



Congruence Subgroups
Let  be the image of the upper 
triangular matrices in .  


   .


We define the TMC with level :


.


Then we get Belyi maps to 


.

H0 ≤ PXL2(ℤE /𝔭)
XL2(ℤE /𝔭)

Γ0(𝔭) = Γ0(a, b, c; 𝔭) := π−1
𝔭 (H0)

𝔭

X0(𝔭) = X0(a, b, c; 𝔭) := Γ0(𝔭) \ ℋ

X(1)

X(𝔭) → X0(𝔭) → X(1)

We can also construct  and we get
X1(a, b, c; 𝔭)

X(𝔭) → X1(𝔭) → X0(𝔭) → X(1)

X(1) ≃ ℙ1

X(𝔭)

X0(𝔭)



Ramification
Lemma (DR & Voight, 2023). Let  with  for  prime. 

 is a hyperbolic admissible triple. Let  have order  and if 
 suppose .  Then the action of  on  has


 orbits of length  and 


In particular  must divide one between  for all  
and we understand the ramification of the cover 


.

G = PXL2(𝔽q) q = pr p
(a, b, c) σs ∈ G s ≥ 2
s = 2 p = 2 σs G/H0

⌊ q + 1
s ⌋ s

0 fixed points if s | (q + 1),
1 fixed point if s = p,
2 fixed points if s | (q − 1) .

s q − 1, p, or q + 1 s ∈ {a, b, c}

X0(𝔭) → ℙ1



TMCs of Bounded Genus
Proposition. Let  be the genus of . Recall that 

. Then


In particular the number of TMCs  of genus  is finite.


We obtain an explicit formula for the genus


.

g0 ≥ 0 X0(a, b, c; 𝔭)
q := #𝔽𝔭

X0(a, b, c; 𝔭) g0

g(X0(a, b, c; 𝔭))

q ≤
2(g0 + 1)

|χ(a, b, c) |
+ 1q ≤

2(g0 + 1)
1/42

+ 1



Main Theorem

Theorem (DR & Voight, 2023).  For any  there are 
finitely many Borel-type triangular modular curves 

 of genus  with (admissible) prime level .  The 
number of curves  of genus  are as follows:


•  curves of genus ;


•  curves of genus ;


•  curves of genus .

g ∈ ℤ≥0

X0(a, b, c; 𝔭) g 𝔭
X0(a, b, c; 𝔭) g ≤ 2

76 0

268 1

485 2



Enumeration Algorithm
Input: .


Output: A list of  such that  has genus bounded 
by  where  is a prime of  of norm .


1. Generate a list of possible  values.


2. For each  find all -admissible hyperbolic triples .


3. Compute the genus  of  by checking divisibility. 


4. If  add  to the list lowGenus.

g0 ∈ ℤ≥0

(a, b, c; p) X0(a, b, c; 𝔭)
g0 𝔭 E(a, b, c) p

q

q q (a, b, c)

g X0(a, b, c; 𝔭)

g ≤ g0 (a, b, c; p)



Composite Level
Theorem (DR & Voight, 2023).  For any , there are only finitely many 
Borel-type triangular modular curves  and  of genus  
with nontrivial admissible level .


Challenges:


1. The map  might not be injective.


2. Describing admissibility is harder.


3. The genus formula is more complicated.


4. The enumeration algorithm takes significantly longer because we are 
computing matrix groups explicitly.

g ∈ ℤ≥0
X0(a, b, c; 𝔑) X1(a, b, c; 𝔑) g

𝔑

SL2(ℤE /𝔑)/{±1} → PGL2(ℤE /𝔑)



But This is the Beginning…

• Find models of TMCs of low genus and relate them to the 
existing database of curves in the LMFDB (at least over ).


• Describe all rational points (over the field of definition) of 
TMCs.


• Conjecture. For all , there are only finitely many 
admissible triangular modular curves of genus . 

ℚ

g ≥ 0
g



Part 2: Geometric Quadratic 
Chabauty

Goal: to (provably) find all rational points on a curve.



Chabauty’s Theorem
• Let  be a curve (over ) of genus .


• Let  be the Jacobian of .


• Let  be the Mordell-Weil rank of .


• Let  be a prime number.


Chabauty’s Theorem (1941).  If , then 


, 


and this intersection is finite.

C ℚ g ≥ 2

J C

r J

p

r < g

ι(C(ℚ)) ⊆ ι(C(ℚp)) ∩ J(ℚ) ⊆ J(ℚp)



Chabauty’s Theorem
• Let  be a curve (over ) of genus .


• Let  be the Jacobian of .


• Let  be the Mordell-Weil rank of .


• Let  be a prime number.


Chabauty’s Theorem (1941).  If , then 


, 


and this intersection is finite.

C ℚ g ≥ 2

J C

r J

p

r < g
ι(C(ℚ)) ⊆ ι(C(ℚp)) ∩ J(ℚ) ⊆ J(ℚp)



(Cohomological) Quadratic Chabauty 

• Chabauty—Kim’s Program (2009).  To use -adic methods to determine 
.


• Balakrishnan & Dogra (2018, 2021).  The program is made explicit for 
 and  of good reduction.  The method produced a set of adic points 

containing the rational points.


• The method is then applied to examples:


, the cursed curve by Balakrishnan, Dogra, Müller, Tuitman, and 
Vonk (2019).


 by Balakrishnan, Best, Bianchi, Lawrence, Müller, Triantafillou, 
and Vonk (2021).

p
C(ℚ)

r = g p p−

Xs(13)

X0(67)+



Geometric Quadratic Chabauty
Let  be a nice curve of genus , Mordell-Weil rank , 
and Néron-Severi rank .  Let  be a prime number.


•  is the (smooth locus) of a regular model for .  
Then .


•  is the Jacobian of  and  is its Néron model.


•  is a base point.


•  is the Abel-Jacobi map.


We construct a -torsor  over  that trivializes .  


Theorem (Edixhoven & Lido, 2021). If , then 
the following set is finite:

C g ≥ 2 r
ρ p

Xsm C
Xsm(ℤ) = C(ℚ)

JC C J/ℤ

b ∈ C(ℚ) = Xsm(ℤ)

ι : Xsm → J

𝔾ρ−1
m T J X

r < g + ρ − 1

T(ℤ)ι̃(Xsm(ℤp)) ∩ ⊆ T(ℤp)



A Comparison Theorem
Theorem (DR, Hashimoto, and Spelier, 2022). Assume that  is a 
prime of good reduction for . Assume that , , and 
furthermore the adic closure  is finite index in . Assume 
there exists a rational base point . Let  be the finite set 
of adic points defined under these assumptions in the 
cohomological quadratic Chabauty method.  Then we have the 
inclusions 


,


and we can explicitly characterize .

p
Xℚ r = g ρ > 1

p− Jℚ(ℚ) Jℚ(ℚp)
b ∈ X(ℚ) X(ℚp)′￼2

p−

Xℚ(ℚ) ⊆ ι̃(Xsm(ℤp)) ∩ T(ℤ) ⊆ X(ℚp)′￼2 ⊆ Xℚ(ℚp)

X(ℚp)′￼2∖ι̃(Xsm(ℤp)) ∩ T(ℤ)



Example: X0(67)+

We have .r = g = ρ = 2

Xsm(ℤ)

Xsm(ℤp)

T(ℤp)

J(ℤp)

T(ℤ)

J(ℤ)




1. Compute  via a section.


2. Compute  with image .


3. A Hensel-like lemma implies that finite 
precision is enough.


The set of points of  reducing to  are 
contained in


.

ι̃(Xsm(ℤp)) ∩ T(ℤ) ⊆ T(ℤp)

ι̃ : Xsm → T(ℤp)ĩ(P̄)

κ : ℤr
p → T(ℤp)ι̃(P̄) T(ℤ)ι̃(P̄)

X(ℤ) (0, − 1)

{(0, − 1), (4 ⋅ 7 + O(72),6 + O(72))}



What is Next?
• Finish the computation for one missing residue disk.


• Find an example in which the difference between the set of points 
given by cohomological quadratic Chabauty and geometric 
quadratic Chabauty is made apparent.


• Compute an example of geometric quadratic Chabauty for which 
.


• Does one of our algorithms help to compute adic heights away 
from ?

r ≠ g

p−
p





Thank You!
• John Voight.


• My committee: John Voight (chair), Asher Auel, Pete Clark, and Rosa 
Orellana.


• My collaborators Sachi Hashimoto and Pim Spelier.


• Rachel Pries.


• Gracias mamá, papá y toda mi familia.


• The Dartmouth Mathematics department, special thanks to DANTS people.


• All of you for being here and being part of this journey.





Summary
• Theorem (DR & Voight, 2023). For any , there are only finitely many 

Borel-type triangular modular curves  and  of genus  
with nontrivial admissible level . 


• We present an explicit algorithm to enumerate all such curves of a fixed genus 
and carry out the enumeration for .


• Theorem (DR, Hashimoto, and Spelier, 2023).  When the cohomological and the 
geometric quadratic Chabauty methods apply, the set of -adic points produced 
by the cohomological method is contained in the set produced by the geometric 
method.  This difference can be characterized.


• We produced algorithms to make the geometric quadratic Chabauty method 
explicit for hyperelliptic curves by using -adic heights.

g ∈ ℤ≥0
X0(a, b, c; 𝔑) X1(a, b, c; 𝔑) g

𝔑

g ≤ 2

p

p


